Gravitino Dark Matter

Gravitino Dark Matter

Gravitino Dark Matter Michael Grefe Departamento de F´ısica Teorica´ Instituto de F´ısica Teorica´ UAM/CSIC Universidad Autonoma´ de Madrid Exotic Physics with Neutrino Telescopes 2013 Centre de Physique des Particules de Marseille 3 April 2013 Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 1 / 15 Motivation for Unstable Gravitino Dark Matter What Do We Know about Dark Matter? I Observed on various scales through its gravitational interaction I Contributes significantly to the energy density of the universe [M. Whittle] [ESA / Planck Collaboration] [NASA / Clowe et al.] I Dark matter properties known from observations: • No electromagnetic and strong interactions • At least gravitational and at most weak-scale interactions • Non-baryonic • Cold (maybe warm) • Extremely long-lived but can be unstable! [ESA / Planck Collaboration] Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 2 / 15 Motivation for Unstable Gravitino Dark Matter Gravitino Dark Matter: Stable or Unstable? I Stable Gravitino Dark Matter • Typical in gauge mediation with conserved R-parity −4 • No direct detection signal expected: σN ∼ MPl −4 • No annihilation signal expected: σann ∼ MPl • Collider signals from long-lived NLSP expected • Long-lived NLSP can be in conflict with BBN [The Particle Zoo] I Unstable Gravitino Dark Matter • Typical candidate in models with R-parity violation • Lifetime larger than the age of the universe −4 • No direct detection signal expected: σN ∼ MPl • Decays could lead to observable cosmic-ray signals • Collider signals from long-lived NLSP expected Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 3 / 15 Gravitino Dark Matter with Broken R Parity Models with Gravitino DM and R-Parity Violation I Bilinear R-parity violation (BRpV) [Takayama, Yamaguchi (2000), Restrepo et al. (2011)] • R-parity violation is source of neutrino masses and mixings • Predictive model: gravitino mass constrained to be below few GeV I ”µ from ν” Supersymmetric SM (µνSSM) [Lopez-Fogliani,´ Munoz˜ (2005)] • Electroweak see-saw mechanism for neutrino masses • Solves the µ-problem similar to the NMSSM • Predictive model: gravitino mass constrained to be below few GeV I Bilinear R-parity violation from B–L breaking [Buchmuller¨ et al. (2007)] • Consistent gravitino cosmology with thermal leptogenesis and BBN •O (10) GeV < m3=2 < O(500) GeV, gluino mass below a few TeV I Trilinear R-parity violation [Moreau et al. (2001), Lola et al. (2007)] • Phenemenological study, trilinear terms generically expected without R-parity I PeV neutrino events from gravitino decay? [Feldstein et al. (2013)] • Gravitino mass and lifetime: 2.4 PeV, 1028 s. Continuum neutrinos observable? Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 4 / 15 Gravitino Dark Matter with Broken R Parity Gravitino Decay Channels I Bilinear R-parity violation • Several two-body decay channels: 3=2 ! γν i ; Z νi ; W `i ; h νi • Neutrino line + continuous spectrum • Flavour of the monochromatic neutrino depends on the flavour structure of RpV [MG (2011)] f I Trilinear R-parity violation • Several three-body decay channels: G ¯ ¯ ¯ pf f˜ 3=2 ! νi `j `k ;ν i dj dk ; `i uj dk ; ui dj dk R • Depends on flavour structure of RpV • 6 (c) γ k • Continuous neutrino spectrum ℓ G ν pf • p k • Two-body decay only possible via loops: R − ℓ˜ 6 3=2 ! γν i [Lola et al. (2007)] Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 5 / 15 Gravitino Dark Matter with Broken R Parity Final State Particle Spectra I Gravitino decays produce stable cosmic rays: γ; e; p; d;ν e/µ/τ • Spectra can be simulated with PYTHIA • Soft part dominated by pion decay: νµ ∼ 2 × νe , ντ much lower • Spectral features close to high-energy cut-off from Z; W ; h decay • In addition neutrino line at E ∼ m3=2=2 1 10 y3 2 ® Z ni , ne ne Spectrum 10 y3 2 ® Z ni , nm nm Spectrum y3 2 ® Z ni , nt nt Spectrum dx dx dx dN dN x dN x 0.1 x 1 1 Spectrum 0.01 Spectrum Spectrum 0.1 0.1 Neutrino -3 Neutrino 10 100 GeV 100 GeV Neutrino 100 GeV m3 2 = 1 TeV m3 2 = 1 TeV m3 2 = 1 TeV Tau Muon Electron 10 TeV 10 TeV 10 TeV 0.01 0.01 -4 10 10-6 10-5 10-4 10-3 0.01 0.1 1 10-6 10-5 10-4 10-3 0.01 0.1 1 10-4 10-3 0.01 0.1 1 Energy x = 2 E m Energy x = 2 E m Energy x = 2 E m 3 2 3 2 [MG et al. (2013)] 3 2 Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 6 / 15 Indirect Detection of Gravitino Dark Matter Cosmic-Ray Propagation I Cosmic rays from gravitino decays propagate through the Milky Way I Experiments observe spectra of cosmic rays at Earth [NASA E/PO, SSU, Aurore Simonnet] [AMS-02 Collaboration] [IceCube Collaboration] Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 7 / 15 Directional detection can distinguish unstable gravitino from WIMPs! Indirect Detection of Gravitino Dark Matter Difference of Dark Matter Annihilations and Decays I Angular distribution of the gamma-ray/neutrino flux from the galactic halo: Dark Matter Annihilation Dark Matter Decay dJ σv dN dJ 1 dN halo DM 2 ~ ~ halo = ρ (~) ~ = h i 2 ρhalo(l) dl halo l dl dE 8π mDM dE dE 4π τDM mDM dE l.o.s.Z l.o.s.Z particle physics astrophysics particle physics astrophysics Annihilation (e.g. WIMP dark matter) NFW Anticenter • Annihilation cross section related to relic density 100 to Einasto Isothermal • Strong signal from peaked structures annihilation • Uncertainties from choice of halo profile Normalized 10 Decay (e.g. unstable gravitino dark matter) Integral decay Sight • Lifetime unrelated to production in early universe - 1 value at galactic anticenter of - • Less anisotropic signal Line -180 ° -90 ° 0 ° 90 ° 180 ° Galactic Longitude [MG (2011)] • Less sensitive to the halo model Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 8 / 15 Indirect Detection of Gravitino Dark Matter Difference of Dark Matter Annihilations and Decays I Angular distribution of the gamma-ray/neutrino flux from the galactic halo: Dark Matter Annihilation Dark Matter Decay dJ σv dN dJ 1 dN halo DM 2 ~ ~ halo = ρ (~) ~ = h i 2 ρhalo(l) dl halo l dl dE 8π mDM dE dE 4π τDM mDM dE l.o.s.Z l.o.s.Z particle physics astrophysics particle physics astrophysics Annihilation (e.g. WIMP dark matter) NFW Anticenter • Annihilation cross section related to relic density 100 to Einasto Isothermal • Strong signal from peaked structures annihilation • Uncertainties from choice of halo profile Normalized 10 Decay (e.g. unstable gravitino dark matter) Integral decay Sight • Lifetime unrelated to production in early universe - 1 value at galactic anticenter of - • Less anisotropic signal Line -180 ° -90 ° 0 ° 90 ° 180 ° Galactic Longitude [MG (2011)] • Less sensitive to the halo model Directional detection can distinguish unstable gravitino from WIMPs! Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 8 / 15 Indirect Detection of Gravitino Dark Matter Neutrino Signals from Gravitino Decays I Atmospheric neutrinos are dominant background for gravitino decay signal • Discrimination of neutrino flavours allows to reduce the background • Sensitivity best for large gravitino masses 3 ç æ - n 10 ò ò IceCube-79 ne IceCube 40 Unfolding m ò ò ó ó ó Fréjus ne IceCube-40 Forward Folding nm ó ò ò ì - n L ò AMANDA II Unfolding m 1 100 ó - ó ó AMANDA-II Forward Folding nm sr 1 ò Super-Kamiokande nm - ò s 10 2 ó ò Fréjus nm - æ n m atm. m æ ò atm. ne 1 ç æ GeV H atm. nt æ preliminary ç ì Flux æ 0.1 ò ì 26 ç æ ì t3 2 = 10 s ì æ 0.01 ì Neutrino ç æ ì ´ ì 2 æ n - ì E 10 3 æ ì 100 GeV 1 TeV 10 TeV æ 10-4 1 10 100 1000 10 000 100 000 Neutrino Energy En GeV [MG et al. (2013)] I Neutrinos from models like BRpV and µνSSMH L most likely not observable • Sensitivity to lifetimes beyond 1028 s needed at energies around 1 GeV Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 9 / 15 Indirect Detection of Gravitino Dark Matter Neutrino Detection – Upward Through-Going Muons I Muon tracks from charged current DIS of muon neutrinos off nuclei Advantages • Muon track reconstruction is well-understood at neutrino telescopes Disadvantages • Neutrino–nucleon DIS and propagation energy losses shift muon spectrum to lower energies • Bad energy resolution (∼ 0:3 in log10 E) smears out cut-off energy Upward Through-Going Muons Upward Through-Going Muons 105 10 4 atmospheric background L 10 1 - yr 2 3 - 10 1 km H 100 0.1 10 Statistical Significance Muon Flux 26 Τ32 = 10 s 1 m32 = 100 GeV 1 TeV 10 TeV 0.01 m32 = 100 GeV 1 TeV 10 TeV 26 Τ32 = 10 s 0.1 1 10 100 1000 10 000 100 000 1 10 100 1000 10 000 100 000 Energy HGeVL Energy HGeVL [MG (2011)] Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 10 / 15 Indirect Detection of Gravitino Dark Matter Neutrino Detection – Improvements With Cascades I Hadronic and electromagnetic cascades from charged current DIS of electron and tau neutrinos and neutral current interactions of all neutrino flavours Disadvantages • TeV-scale cascades are difficult to discriminate from short muon tracks Advantages • 3× larger signal and 3× lower background compared to other channels • Better energy resolution (0.18 in log10 E) helps to distinguish spectral features Shower Events 106 Shower Events 100 5 L 1 10 - yr atmospheric background 10 3 4 - 10 km H 1 103 100 0.1 Statistical Significance Shower Rate Τ = 1026 s 26 10 32 Τ32 = 10 s = 0.01 m32 100 GeV 1 TeV 10 TeV m32 = 100 GeV 1 TeV 10 TeV 1 1 10 100 1000 10 000 100 000 1 10 100 1000 10 000 100 000 Energy HGeVL Energy HGeVL [MG (2011)] Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter EPNT 2013 – 3 April 2013 11 / 15 Indirect Detection of Gravitino Dark Matter Gravitino Decay Signals in Cosmic-Ray Spectra Antiproton Flux 0.1 preliminary æ PAMELA data Astrophysical Background æ æ æ æ æ æ æ L æ æ æ 1 æ MAX 150 GeV - 0.01 æ æ sr æ æ MED 1 TeV 1 æ - MIN 5 TeV s æ 2 æ - 10-3 m æ 28 1 t = - 3 2 10 s æ GeV æ H 10-4 Flux æ 10-5 æ Antiproton 10-6 10-7 0.1 1 10 100 1000 Kinetic Energy GeV [MG et al.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us