Tunnel Diode Models for Electronic Circuit Analysis Program (ECAP)

Tunnel Diode Models for Electronic Circuit Analysis Program (ECAP)

Scholars' Mine Masters Theses Student Theses and Dissertations 1969 Tunnel diode models for electronic circuit analysis program (ECAP) Carmon Dale Thiems Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Electrical and Computer Engineering Commons Department: Recommended Citation Thiems, Carmon Dale, "Tunnel diode models for electronic circuit analysis program (ECAP)" (1969). Masters Theses. 7002. https://scholarsmine.mst.edu/masters_theses/7002 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. TUNNEL DIODE MODELS FOR ELECTRONIC CIRCUIT ANALYSIS PROGRAM (ECAP) BY :;4 I CARMON DALE THIEMS , 1938- A THESIS s ubmitted to the faculty of THE UNIVERSITY OF MI SSOU.I - R J~ LA in partial f ulfillmen t of the req uirement~ for t Degree of MASTER OF SC IENCE IN ELECTRICAL ENGI~EE I .J Ro lla, Hissouri 1969 T. 2274 ~ 68 pages Approved by TABLE OF CONTENTS LIST OF FIGURES . ....•••..•.••.•.•...•...••..•....•....... iii LIST OF PHOTOGRAPHS •••••••••••••••••••••••••••••••••••••• v LIST OF TABLES . ..•.••.•.•...•••.••..•••.••..••.•••.•.••.• vi I. INTRODUCTION • •..•.••••.•••••.••.••.•••...•..•... .1 II. MODELS Ah~ CURRENT-VOLTAGE CHARACTERISTICS .•.••• 4 III. MODELS IN CIRCUIT APPLICATIONS •.•••••••.••...••. IV. CONCLUSIONS ..•..•.•..•.............•.•••...•.... 30 APPENDIX I-SUXMARY OF MODELING OF ACTIVE DEVICES FOR COMPUTER-AIDED CIRCUIT DESIGN •.•••••.•.•..•. J4 REFERENCES . ....•...•.•.••.•...•......••..•.•...• 43 i-.??S:DIX II-ANALYSIS, CALCULXi'ION M~D SEL:C:CTlOJ.\ OF PA1\fu'1ETERS FOR TUNNEL DIODE HODELS .•.•..•.... 45 BIBLIOGRAP11Y ............... g ••••••••••••••••••••• 59 'i IT!...,. • ••••••••••••••••••••••••••••••••••••••••••• iii LIST OF FIGURES Page Figur~ 1 Tunnel Diode Current-Voltage Characteristics 1 Figure 2 Model 1 Current-Voltage Characteristics 4 Figu-re 3 Hodel 1 6 Figure 4 Model 1 Current-Voltage Curve 7 Figure 5 Model 2 Current-Voltage Characteristic 8 Figure 6 Model 2 Figure 7 Hodel 2 Current-Voltage Curve 11 Figure 8 Model 3 Current-Voltage Characteristic 12 Figure 9 Model 3 13 Figure 10 Model 3 Current-Voltage Curve 16 Figure 11 Relaxation Oscillator 17 Figure 12 Astable Multivibrator 19 Figure 13 Model 1 Oscillator Output \vaveform 21 Figure 14 Model 2 Oscillator Output tvaveform 23 Figure 15 Model 3 Oscillator Output Waveform 25 Figure 16 Model 1 Multivibrator Output tvaveform 27 Figure 17 Hodel 2 Mul tivibrator Output t.Javeform ~ r F::.gure I-1 Diode Current-Voltage Characteristic .JO Figu::..::: I-2 D::.ode Models 37 F~gure I-3 Ebers-Noll Hodel 3S 'io':..gure I-4 Beaufoy-Sparks Charge Control Model 39 ·?::..gur~ I-S Linvill Lumped Model 39 7::.gu-:.-.: 1-6 Zener Diode Model 40 iv Figure I-7 Tunnel Diode Model 4l Figure II-1 Tunnel Diode Current-Voltage Characteristic 47 Figure II-2 Model 1 48 Figure 11-3 Three Section Piecewise Linear Current Voltage Curve 49 Figure II-4 Model 2 52 Figure 11.;..5 Five Section Piecewise Linear Current Voltage Curve 53 Figure 11-6 Hodel 3 56 Figure I1-7 Model 3 Current-Voltage Characteristic 57 v LIST OF PHOTOGRAPHS Page Photograph l TD-19 Current-Voltage Curve 2 Photograph 2 TD-13 Current-Voltage Curve 2 Photograph 3 Oscillator Output Voltage Waveform::. 18 Photograph 4 Multivibrator Output Voltage Waveform 18 vi LIST OF TABLES P<:.ge TABLE I Model 1 ECAP Data 5 TABLE II Model 2 ECAP Data 10 TABLE III Model 3 ECAP Data 15 TABLE IV Model 1 Oscillator ECAP Data 20 TABLE v Hodel 2 Oscillator ECAP Data 22 TABLE VI Hodel 3 Oscillator ECAP Data 24 TABLE VII Model 1 Multi vibrator ECAP Data 26 TABLE VIII Model 2 Multi vibrator ECAP Data 26 TABLE II-1 Data From G.E. Data Sheet 46 TABLE II-2 Model 1 Parameter Values so TABLE II-3 Model 2 Parameter Values 55 TABLE II-4 Model 3 Parameter Values 58 1 I. INTRODUCTION In this paper ECAP models for the tunnel diode are pre- sented. Results showing the model, the current-voltage charateris- tics are discussed. Operation in typical circuits is presented. A summary of the current state of the art in modeling appears in Appendix I. Since ECAP is only structured to accept piecewise-linear models of these devices, that type of model is presented here. All of the models are developed to approximate the typical tunnel diode current-voltage characteristic shown in Figure 1 and also in Photographs 1 and 2. In Figure 1, peak current (Ip) and peak voltage (Vp) identifies the point on the curve where the negative portion of the V-I curve begins and valley current and valley voltage identifies the point where the negative portion of the V-I curve ends. These models use controlled current sources to I ~ Ip il.) i-1 CJ ;::C'~ r~ 'T"i ....... ............ -s v VOLTAGE (millivolts) Figure. 1 Tunnel Diode Current-Voltage Characteristics 2 ! v !/ I I I I I ) I I I 1/ I o_ if - V1 Photograph 1 (traced) TD-19 Current Voltage Curve CURRENT-2ma/cm VOLTAGE-O.OSv/cm I I /'/ I I I I I I I I I I \ i J I I l u II I I i Photograph 2 (traced) TD-13 Current Voltage Curve CURRENT-0.2ma/cm VOLTAGE-O.OSv/cm 3 realize the negative slope portion of these curves rather than the negative resistors used by other tunnel diode models. The models shown in Figure 3, 6 and 9 use all of the available ECAP stored elements; resistors, inductors, capacitors, voltage sources, dependent current sources, and independent current sources. The method used to select the element values for a particular tunnel diode is discussed in Appendix II. 4 II. MODELS AND CURRENT-VOLTAGE CHARACTERISTICS The first model shown in Figure 3 and its current-voltage curve in Figure 2 represent the simpliest meaningful straight line approximation of the current voltage curve of the actual I ~ ~ ~ Ip ~ ~ ~ 8 ~ ~ ~ ~ I ~ E J '-' I z~ ' I ~ I ~ ' ' I ~ ' / u / Iv v VOLTAGE (millivolts) Figure 2 Model 1 Current-Voltage Characteristics device. The conductance G1 shown in Figure 3 is the element which accounts for the positive slope line from (0,0) to (Vp,Ip). At that point the controlled current source with -GX1 and control- led by current in R3 is switched in the circuit S2 and provides the negative slope line from (Vp,Ip) to (Vv,Iv). Then the control- led current source with GM1 controlled by current in Rz and current source -I1 are switched in for the remaining positive slope The model is discussed in more detail in Appendix ~I. 5 'Ilk ECAP data in TABLE I describes the model of Figure 3 approximating TD-19 General Electric tunnel diode. TABLE I Model 1 ECAP Data Transient Analysis Bl N(l,2), R=(lOE7,0.36) E2 N(2,0), G~(0.154,0.058), E•(0,-0.355), I•(0,-0.00095) B3 N(2,0), R=lOES B4 N(2,3), R=l0E8 B5 N(3,0), R=O.OOl, E=-0.065 B6 N(2,0), R=l0E8, E-0.355 B7 N(2,0), C=l7E-!l BS N(4,1), L=O.SE-Y B9 N(2,3), R=l0E8 c ******************************************************* C These three cards describe the voltage generator to C give the voltage sweep for determining the model V-A C characteristic. BlO N(0,4), R=30, E=(l.5,0) Bll N(4,0), C=O.OSE-6 Bl2 N(4,0), R=l0E8, E=(-0.45,0) c ******************************************************* Tl B(9,2), GM=(0,0.185) T2 B(4,3), GM=(0,-0.185) Sl E=l, (l) , OFF 52 B=S, (3,4), OFF S3 B==6, (2,9), OFF S4 B=l2, (10,12), OFF W!1en determining the current-voltage characteristic of the model, B7 and B8 should be changed to the following: 37 N(2,0), R=l0E8 B8 N(4,1), R=O.OOl This is required because the energy stored in the capacitor and inductor are of the same order of magnitude as the energy cissi- pated in the other elements and changing the direction of the voltage and current cause the capacitor and inductor to reverse bias the model. \\fhen used in a circuit these effects are normal and ~ccount for the internal inductance capacitance. The o~Bo1 10E7,Rz ..,, --------- ------r------,, \ , / I I A I , I y I ,I R2 R3 I lOEB lOEB s I , I Gl ,c2 0,-GMl / Rl R4 I R7 I lOEB I lOEB O,GM1 10E8 10.001 I Rs \- I 0,-11 '- I ' "-l.... .._ ---IS2 o,v2..=.. -==.. vl v2 c Figure 3 Hodel 1 0\ 12.50.- ·I ' . - r . I l 1 i l· X-A~tual Vnlu2s ;fot h!ClUl:':lll~: Vd t;"·~:.:c i i 11.25 ' 0-Ar:t•Jal Vnl~t::<;' :for 1}~· c r~; r- ;~ i 1';2 ~· v~o 1. t~_:~gc ·--. -~--1, -~-·-D(~~drcd ,values ! · I l . 10.00 • 'j·•- ~--· t -~~--------~ --- ~--1----· i I ' ; I l ;·. I.. 1. ' t. I i 8.75 i-· -------~-- r --~- -· ---~-~· _____..._ ----~- ---i \ j l i . i -tl) 7.50 --~--· [___ ~i~-- J: ·~- _1_L __ (_~~- --J. __ H~ I H \_ j I l .... J .... ~-- J I ! .. H I~ . ! · 1 · ' t I H ! i i ~ 6.25 _______ )____ -·---·. ·r --- - +------ i -~ , I' i £:1 I. I! ~ 5.00 - . ·---- ----- -:------~--- -- ~--- --· - .. ~ ::J i u I 3.75 I r >f --~ 2. soL - I/ ·I -~~.·: 1. 25 . ~ --· . ~· i ! ,, ' ; ¥ ' i 0 II ! I : ,.-~=~--t.~'"'""""'"--~·--'""-.......1-,.~~-'"':J"'--_...I ___ ;,._.o-,. -~ ... -L~_-L.- 1 I -·.. 1 cr. ,...t..-.~..,..~• .. '" -..l...--~-,_~,... _._t_._. .-~~.;.:.~.a:a~-,.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    69 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us