A Complete Bibliography of Publications in Linear Algebra and its Applications: 2010{2019 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 12 March 2021 Version 1.74 Title word cross-reference KY14, Rim12, Rud12, YHH12, vdH14]. 24 [KAAK11]. 2n − 3[BCS10,ˇ Hil13]. 2 × 2 [CGRVC13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MSvW12, Yan14]. (−1; 1) [AAFG12].´ (0; 1) 2 × 2 × 2 [Ber13b]. 3 [BBS12b, NP10, Ghe14a]. (2; 2; 0) [BZWL13, Bre14, CILL12, CKAC14, Fri12, [CI13, PH12]. (A; B) [PP13b]. (α, β) GOvdD14, GX12a, Kal13b, KK14, YHH12]. [HW11, HZM10]. (C; λ; µ)[dMR12].(`; m) p 3n2 − 2 2n3=2 − 3n [MR13]. [DFG10]. (H; m)[BOZ10].(κ, τ) p 3n2 − 2 2n3=23n [MR14a]. 3 × 3 [CSZ10, CR10c]. (λ, 2) [BBS12b]. (m; s; 0) [Dru14, GLZ14, Sev14]. 3 × 3 × 2 [Ber13b]. [GH13b]. (n − 3) [CGO10]. (n − 3; 2; 1) 3 × 3 × 3 [BH13b]. 4 [Ban13a, BDK11, [CCGR13]. (!) [CL12a]. (P; R)[KNS14]. BZ12b, CK13a, FP14, NSW13, Nor14]. 4 × 4 (R; S )[Tre12].−1 [LZG14]. 0 [AKZ13, σ [CJR11]. 5 Ano12-30, CGGS13, DLMZ14, Wu10a]. 1 [BH13b, CHY12, KRH14, Kol13, MW14a]. [Ano12-30, AHL+14, CGGS13, GM14, 5 × 5 [BAD09, DA10, Hil12a, Spe11]. 5 × n Kal13b, LM12, Wu10a]. 1=n [CNPP12]. [CJR11]. 6 1 <t<2 [Seo14]. 2 [AIS14, AM14, AKA13, [DK13c, DK11, DK12a, DK13b, Kar11a]. 7 BDF11, BdlC14, BDK11, CvDKP13, CL13b, [PP13a, Zho12]. 70 [GRS+11]. [1;n] CNPP12, DoMP09, Ere13, GMT13, GG13, 1 [LWY10]. k [HJN12]. A [AM13d, CK14, log(XY) = log(X)+log(Y ) [Bou10a]. LR DJK12b, HM14b, LSTW13, MS14a, PPK13]. [BM13a]. LU [Dur12, GL12b]. M A + λB [MP14a]. A − BX − (BX)∗ [Tia11b]. [BCEM10, BCEM12, BR14c, Guo13, HLS10, (2) ∗ HZ10, HH11a, JS11, NS11b, SHZ10, Bal12a, AT;S [SPKS12]. A x = λAx [LCwCL11]. 3 ¨ f gd Bal12b, BMN13b, FJ14, Gu14, GK14c, A = λA [Ozd13]. ai i=0 [Han13b]. A 2 Cn;n [BGH12]. α Hua12b, MPSS10, PYZ14, TNP12, Vla12]. M11(E)[KdM13].Mn(Zk)[MPRW11]. [CM12a, Cra13, FKM13]. A x = B x m×n×l ∗ + Mn;m [AAM12]. C [Fri13]. Fq[x] [LdlP11]. AX + X B = 0 [DDG 13]. d×d N AXB = C [AG10]. B [GY13]. R [KK14]. R [Dai13]. R [AT14a, QS14, YY14c, Beh13, Sin10a]. B(X) [San10, FGR13, IJ12, SA14, AMJ14]. Rn + A B H [LJ10]. B [YY14c]. B [JM12b]. B [Wu13b]. Z [JPS13]. [DJK12a]. ( ) 0 D `p M c sl [BS14]. c [CN11c, CN13c, LL11c]. C∗ [DM11]. [DQW13]. [BEM12b]. 2 sl [AF12]. C∗ [NT12b]. 2(C) [BE10]. GL(n; C)[MR11]. [AR12, BB14, BMGMC12, CIH11, GD11a, SO(n + 1) [DMMY10]. SO(n; 1) [DMMY10]. ≤ × × − Kaw13, Pop12, Sha11, WW10, WD10]. C2 m n [SSM13]. m n (m 1)n [SSM13]. ? µ [NT10b, dF10]. n [GMV11]. C [Kaw12]. C4 [ZW12a]. A(n; 2) [Ghe14b]. D [BR14c, FMR12, Kal13a, [BE12, Dug12, Hil13, JLLY10, MR10c, Pin12, WWD13, WW13c, Wan14b, ZHZF13]. Mit11b, NP10, Pry10]. D2t [AAFG12].´ DB n − 3 [ACGVK14, CCGR13]. n − e [LLS12]. [Dai11]. d × d [DHLX12]. E [BZW14]. E8 1 N [ND11, ZH11b]. n × n [KAAK11]. `1 [WY13]. ` [BEM12b].p `p(I) 0 3 [Hil13, MR13, MR14a]. Ωn(T )[ACM14].P [BEM12a]. `1 [Fou14]. `p [BS14]. 2 2 [LL13a]. G [CS13b, FH12a, FM13, GMS12, [AdFM11, BPDC14, DdF14, GTR12, Mat12, AMJ14, CGMS10b, WL10a]. Γ MPS10, PP12b, TGS14, YY14c, CCGVO13, [Lim11b, Aga14, LH10b, SR13b]. CCGO14, Guo10a, HL11b, JMP13, Lin10, f m g1 f m g1 MTS11, OM14, Wol12]. p>0 [BFPSS12]. Γ(A ) m=1 [CK14]. Γ(A ) m=1 [PPK13]. 1 n Pmax [GM11a]. p [Gu13, LWG13]. P0 GF(2) [MMP13a]. GL(V ) [KN13a]. H 0 [BGH12, CMRR13, FGvRR13, GEP10, [AT11, YY14c]. P2 [CPV10]. P2 [CPV10]. QSW14, wXL14, wXZ19]. H [Kar11a]. 1 φJ [DoMP09, MPP10]. φS 2 { g [GL12c, LHWL12]. J [AMP10, DMP11, GMP13]. 1; i [BFdP10, BLdPS10, BFdP11, BFdP12, [KP14a]. [BC14a]. Q FKR11a, FKR12, HSS10, HSS14, dlRMP12]. [Lee13b, AHL11, Bal10, BZ12b, Cer10, K [CC14, FFK11, ACM+12, BM14b, BR14d, CT11b, MW14a, ND11, OdLdAK10, PHS13, BdS10, CR10a, CH14, DCIW12a, DGMS14, Siv13, WBWH13, Yua14, Yua15, ZWL13, DW12a, Fra13, GLS10, HL10b, LSC10, dFdADVJ10, BC14a, CJL13, Ern13, fLyH11, LWZ11, LLH10, LL14b, Nik11, HWG14, IRT14, LL11a, LT11a, NT10b, SvdH11, Tre10, Zha14a, vdH13]. fK; s +1g VS11, VS14b, Wor13, ZYL10]. q +1 [MM10a]. QDR [SPKS12]. QR [BV12a]. R [LRT12, LRT13]. k − 1 [TL13b]. K2 × Kn [Kaw13, BNP11, ZWL13]. fR; s +1;kg [GK14a]. K3 [CPH11]. K4 [CPH11]. K4;4 k 2 [CLST14]. R = I [LSTW13]. R−1 [Gol13]. K5 [Kuz10]. L [SS12a, Fri13]. L s+1 [CFK10a]. RA = A R [LSTW13]. RH2 [Car11, MZ11]. Lp[0; 1]n[q>p Lq[0; 1] [K¨oh14]. RH1 [K¨oh14]. S [BFPSS12]. λ [FdCR10, MP14a]. ΛS [MPT12]. LDU [CRU13, CRU14]. [Drn13a, SBM11, dlCdlRMP14, QSW14]. b(n − 9)=2c [Zhu12c]. Smax [GM11a].p σ [wH13, GEP13]. sl2 [BM12a]. 2 [Sta12]. ? [AKM13, DJK12b]. 2 P m n−j j−1 j=1 A XA = B [Fur10b]. T DK12a, DK13b, FP14, KRH14]. [BM14a, Blu10, ZXX13, BKMS12]. T (x)=f -divergence [CM12a]. -domination ∗ [HN10]. T [LCM13]. Tn [GS12a]. tan θ [LL14b]. -Drazin [CGMS10b]. -eigenvalue [Nak12]. θ [GL12c]. U1 [YX13]. Uq(sl2) [AHL11]. -eigenvalues [Ter13, BCT14, Wor13]. Uq(sl2) [CPZ13, QSW14, WBWH13, XC13]. [BC14a, Ter14]. UT1(R) [Slo12b]. W -entropy [CH11]. -extensions [LCM13]. [CL12b, KK10, PP12b, CH11, CDDY10]. -Fibonacci [DGMS14]. -filiform W (2; 2) [CL12b]. W (n; n − 1) [KMNS12]. [CGO10, CCGVO13, CCGO14]. -form w23(v) [AAKM14]. X [MP13b]. [BDK11]. -forms [BDK11]. -free [ZW12a]. X + AT X−1A = Q [GKL11]. -function [SS12a]. -game [wH13]. X = Af(X)B + C [ZLD11]. XA+ AXT =0 -generalized [CMRR13]. -graded [Cen11]. [CGGS13, DD11a, GS13a]. -graphs [LHWL12]. -Hermitian XA− AX = f(X)[Bou11].ξ [QCH11]. [BFdP10, BLdPS10]. -Householder XM = NX [Lim11b]. xy [KLZ14a]. [MPT12]. -hyperreflexivity [BR14d]. XY + YX∗ [LLF13]. XY − YXT -hyponormal [CDDY10]. -index [CFL13a, FLC11]. yx [KLZ14a]. Z [Yua15, CT11b, Yua14]. -integral [CPR10, CPZ13, GTR12, TG13, XC13]. Z2 [PHS13, ZWL13, dFdADVJ10]. −1 [Cen11]. jjA jj1 [HZ10]. -interpolating [BPDC14]. -invariant [PP13b]. -inverses [WL10a, SPKS12]. * [GD11a, XDFL10, YZ12b]. *-Lie [YZ12b]. -involutory [fLyH11, Tre10]. -isometries *-modules [GD11a]. *-order [XDFL10]. [BMN13b, Gu14, Dug12]. -Jacobi *congruence [DFS14]. [HSS10, HSS14]. -Krawtchouk [Wor13]. -letter [AM14]. -Lie [BZWL13, QCH11]. -adic [ZYL10]. -admissible [CS13b]. -Local [AKA13]. -Lucas [DGMS14]. -algebra [AKM13, CL12b]. -algebras -matching [Beh13]. -matrices [BB14, BMGMC12, CIH11]. -alternating [BK10, Dah10, Ghe14a, Zho12, Kaw13, [BM14a]. -analogue [CJL13]. -analogues AAFG12,´ AT11, AT14a, BCEM10, CPR10, [Ern13]. -arithmetic [MPSS10]. -banded Dai11, FH12a, FM13, FFK11, GEP10, [Hua12b]. -bialgebra [Kaw12]. -bialgebras Guo13, HLS10, HZ10, HH11a, JS11, JPS13, [Kaw13]. -cell [KAAK11]. -class Mat12, ND11, SHZ10, Siv13, wXL14, [DJK12b, MW14a]. -claws [Ban13a]. wXZ19, ZH11b, ZXX13]. -matrix -colored [Kal13b]. -commutative [Tre12]. [BCEM12, BR14c, BGH12, Drn13a, NS11b]. -Commuting [DW12a]. -completable -minimizations [Fou14]. -modules [HJN12]. -complete [Sin10a]. -conjecture [AR12, AF12, Pop12, Sha11, Ter13, Ter14, [NT10b]. -connected [CH14]. WW10, WD10]. -negative [Wol12]. -contractions [MS14a]. -cospectral -Newton [JMP13]. -norm [MTS11]. [BZW14]. -critical [FdCR10, MPS10]. -normal [BFdP10, BFdP11, BFdP12]. -curves [KK10]. -cycles [QSW14]. -cyclic -numerical [CN11c, CN13c]. -observers [GLS10, LL11c, TL13b]. -decompositions [Blu10]. -odd [LWY10]. -operators [GMS12, KNS14]. -derivations [BE12, [JLLY10]. -optimal [Mit11b, NP10]. HW11, HZM10, WW13c, Wan14b, WWD13]. -optimality [FMR12]. -orthogonal -diagonally [LH10b]. -digraphs [GL12c]. [VS14b, dlCdlRMP14, AMP10]. -dimensional -palindromic [BM14a]. -parameters [BDF11, DK13c, CK13a, CILL12, DK11, [JLLY10]. -paranormal [DJK12b]. -partial 3 [AM13d]. -partite [Zha14a, ZWL13]. 4 [Rod12a]. 4-Regular [CLL13a]. 433 -Pascal [VS11]. -paths [QSW14]. [MR14c]. 436 -permanent [Cra13, dF10]. -polynomial [CdGS20, Duk15, LT16, Vla12]. 437 [Lee13b, Cer10, MW14a]. -positive [Kis15, WZ14c]. 438 [MR10c, FGvRR13]. -positivity [GK14c]. [Che14b, KKL13a, LMO16, MR14a]. 439 -Potapov [FKR11a]. -potent [DWW14]. 454 [KB14a]. 455 [HS14a]. 458 [DCIW12a, CLST14, LRT12, LRT13]. [wXZ19, Yua15]. 463 [EKSV18]. -Primitivity [BM14b]. -properties [CPV10]. -property [Bal10, GTR12]. 7 [Gle11, Tam12]. 70th [Bai11]. -quasiseparable-Vandermonde [BOZ10]. -Racah [BC14a, HWG14, NT10b]. -radius 978 [Bar10b, Gle11, Gr¨u12, Lim13b, Rod12a, [OM14]. -reducible [Kar11a]. -Regular Tam12, Zha12a]. 978-0-387-40087-7 [GX12a, CSZ10, CR10a, CR10c, MM10a]. [Zha12a]. 978-0-387-68276-1 [Zha12a]. -regularity [SBM11]. -replicated [PYZ14]. 978-0-521-46193-1 [Gr¨u12]. -robustness [MP13b]. -root 978-0-521-89881-2 [Lim13b]. [Bal12a, Vla12, Bal12b]. -SDD [GEP13]. 978-0-691-12157-4 [Gar12]. -seminorms [GD11a]. -separation 978-0-691-12889-4 [Rod12a]. [AHL+14, vdH14]. -skew [LL11a]. -spectra 978-0-691-14039-1 [Bar10b]. [BZ12b]. -splittings [JM12b]. -spread 978-0-691-14503-7 [Gle11]. [OdLdAK10]. -stability [Kal13a]. -stable 978-1-4614-1098-0 [Tam12]. [BR14c, BBS12b]. -Stieltjes [FKM13]. 978-1-4614-1099-7 [Tam12]. -strong [Car11]. -submanifolds [Lim11b]. -sum [AKZ13]. -summing [SR13b]. A-m-Isometric [AS12a]. Abaffy -tensors [Fri12, DQW13]. -term [BKMS12]. [MAGR13]. Abaffy-Broyden-Spedicato -tetrahedron [IRT14]. -th [TNP12]. [MAGR13]. abelian -theory [CC14]. -Toeplitz [GG13, Rim12]. [BZWL13, Car13, CS13b, DGZ13, DJ14, -transformations [TG13]. -trees GL10a, Kuz10, LW12d, WY14b]. Aberth [SvdH11, vdH13]. -tridiagonal [AMJ14]. [BN13, GN13]. above [Pop13a]. Abraham -unconditional [LM12]. -variable [KY14]. [Ano13f]. Absolute [Nak10, HW14b, Kra12, -vectors [Aga14]. -vertices LMM11, ST10a, ZHQ13]. Absolutely [AdFM11, DdF14]. -walk-regular [SR13b, Pel14]. absorbing [Nem13]. [CvDKP13, DFG10]. -way
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages448 Page
-
File Size-