A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment

A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment

ORE Open Research Exeter TITLE A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment AUTHORS Velusamy, S; Roy, A; Sundaram, S; et al. JOURNAL The Chemical Record DEPOSITED IN ORE 11 January 2021 This version available at http://hdl.handle.net/10871/124354 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Personal Account DOI: 10.1002/tcr.202000153 A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption THE Strategies for Textile Wastewater CHEMICAL RECORD Treatment Sasireka Velusamy, Anurag Roy, Senthilarasu Sundaram,* and Tapas Kumar Mallick[a] Abstract: Textile wastewater heavy metal pollution has become a severe environmental problem worldwide. Metal ion inclusion in a dye molecule exhibits a bathochromic shift producing deeper but duller shades, which provides excellent colouration. The ejection of a massive volume of wastewater containing heavy metal ions such as Cr (VI), Pb (II), Cd (II) and Zn (II) and metal- containing dyes are an unavoidable consequence because the textile industry consumes large quantities of water and all these chemicals cannot be combined entirely with fibres during the dyeing process. These high concentrations of chemicals in effluents interfere with the natural water resources, cause severe toxicological implications on the environment with a dramatic impact on human health. This article reviewed the various metal-containing dye types and their heavy metal ions pollution from entryway to the wastewater, which then briefly explored the effects on human health and the environment. Graphene-based absorbers, specially graphene oxide (GO) benefits from an ordered structured, high specific surface area, and flexible surface functionalization options, which are indispensable to realize a high performance of heavy metal ion removal. These exceptional adsorption properties of graphene-based materials support a position of ubiquity in our everyday lives. The collective representation of the textile wastewater‘s effective remediation methods is discussed and focused on the GO-based adsorption methods. Understanding the critical impact regarding the GO-based materials established adsorption portfolio for heavy metal ions removal are also discussed. Various heavy-metal ions and their pollutant effect, ways to remove such heavy metal ions and role of graphene-based adsorbent including their demand, perspective, limitation, and relative scopes are discussed elaborately in the review. Keywords: Adsorption, Graphene Oxide, Heavy metal removal, Textile effluent treatment, Wastewater treatment methods 1. Introduction has been attributed due to the ability of water to dissolve more substances than any other liquid on the earth. This character- The rapid industrialisation, urbanisation and population have istic makes water pollution easily, and water resources such as created huge stress on water usage and polluted drastically, rivers, reservoirs, lakes and our ocean are drowning in which increase the demand for clean water. Water pollution chemicals, waste, plastics and other toxic pollutants. The number of individuals living in water scare areas will increase [a] S. Velusamy, A. Roy, S. Sundaram, T. Kumar Mallick to around 3.9 billion by 2030, as assessed by the World Water Environment and Sustainability Institute, University of Exeter, Council.[1] The current and forthcoming water scarcity has Penryn Campus, Cornwall TR10 9FE, U.K increased the need for wastewater treatment and fit for E-mail: [email protected] household activities, industries or agricultural activities. © 2021 The Authors. Published by The Chemical Society of Japan & Textiles manufacturing is a large industry globally that Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, dis- generates significant quantities of wastewater. Wastewater tribution and reproduction in any medium, provided the original management and potable water purification are crucial to work is properly cited. sustain human society's rapid development and mitigate Chem. Rec. 2021, 21, 1–42 © 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH Wiley Online Library 1 Wiley VCH Freitag, 05.03.2021 2199 / 191960 [S. 1/42] 1 Personal Account THE CHEMICAL RECORD environmental pollution and health hazards. Leaching harmful wastewater and substantially increasing recycling and safe reuse substances and accordingly, their contamination has come to globally” by 2030.[2,3] The research addresses other sustainable be seen as a societal problem and has caused health problems development goals (SDGs), including among other things: for millions of people. Figure 1 shows the schematic represen- SDG3 (good health); SDG11 (sustainable communities); and tation of water pollution originates from industries effluent. SDG12 (responsible consumption).[4] Textile industrial wastewater pollution is a particular threat to In this scenario, wastewater treatment becomes of topmost water resources and a growing economy. An estimated importance. The discharge from different range of industries 38354 million litres per day (MLD) sewage is generated in such as textile industries, paper and pulp industries, dye and India's major cities, but the sewage treatment capacity is only dye intermediates industries, pharmaceutical industries, tan- of 11786 MLD. Similarly, only 60% of industrial wastewater, nery industries, paint industries and kraft bleaching industries mostly large-scale industries, is treated. India’s environmental are considered a wide variety of organic pollutants introduced technology sector is expanding rapidly, with evident business into the natural water resources from which textile industries opportunities for pollution abatement technology innovations. (54%) generates half of the existing dye effluents seen in the The United Nations (2015: 6.3) has specifically targeted world-wide environment followed by the dyeing industries improvements to “water quality by reducing pollution, (21%), paper and pulp industries (10%), tannery and paint eliminating dumping and minimizing release of hazardous industries (8%) and the dye manufacturing industries (7%) chemicals and materials, having the proportion of untreated shown in Figure 2.[5] These industries' effluents cause severe Sasireka Velusamy is a postgraduate re- Senthilarasu Sundaram is a Senior Lecturer searcher working in wastewater treatment, in Renewable Energy at the College of especially textile wastewater remediation Engineering, Mathematics and Physical using a graphene membrane. Her research Sciences (CEMPS) at the University of interest is in the heavy metal pollution Exeter. He has been in energy materials assessment and removal using graphene and device architecture for the past 20 membrane from the textile industries. She years since he started his PhD career at received her MPhil degree from Bharathi- Bharathiar University, Coimbatore, India. dasan University, India and her Master Dr. Sundaram is an expert in materials degree from Bharathiar University, India. design for energy conversion, water treat- ment and engineering for solar cell devices. Anurag Roy is a postdoctoral researcher in He has published more than 130 articles the Environment & Sustainability Insti- in the international journals and 70 articles tute, University of Exeter, Penryn campus, in the reputed conferences. U.K. He has a PhD in Chemistry from CSIR-Central Glass and Ceramic Research Prof. Tapas Mallick is a Chair in Clean Institute, Kolkata, India. He is one of the Technologies in the University of Exeter leading young researchers at the material and experts in applied solar technologies. science interface between chemistry and Prior to joining the UoE, he was at physics aspects and recognized as such in Heriot-Watt University where he led the the community. His work focuses on “Applied Solar Energy Research” and the structure-property-performance relation- “Concentrating Solar Energy” group with- ship establishment for functional nano- in the Scottish Institute for Solar Energy structured materials regarding their ad- Research – SISER. He has published over vanced photovoltaic and wastewater 280 articles and holds a pending patent on treatment purpose. He is a fellow of solar technology. His research focuses on Indian Chemical Society, and Scholars energy conversion using solar technologies Academic and Scientific Society. He has and applications in the Food-water-energy also awarded with INSPIRE PhD fellow- nexus area. ship (Govt. of India), Newton-Bhabha PhD placement program, JUICE (India- UK) Overseas placement, GW4 Climate symposia etc. Chem. Rec. 2021, 21, 1–42 © 2021 The Authors. Published by The Chemical Society of Japan & Wiley-VCH GmbH Wiley Online Library 2 Wiley VCH Freitag, 05.03.2021 2199 / 191960 [S. 2/42] 1 Personal Account THE CHEMICAL RECORD Figure 1. Schematic representation of water pollution originates from industries effluent. Figure 2. Comparison of dye effluent discharge from various industries.[5] environmental impact, especially from the textile industry. It South Korea. India is one of the largest textile producers, generates a massive impact on

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us