Cracking Fundamentals

Cracking Fundamentals

Thermal Cracking Fundamentals M. T. Klein Outline 1. Elementary Steps 2. Alkyl Aromatics 3. Alkyl Naphthenics 4. Hydroaromatics 5. Conclusions Thermal Cracking Fundamentals 1 © Michael T. Klein et al. Cracking Fundamentals CATALYTIC: Carbenium Ion Stability Controls THERMAL: Free Radical Stability Controls Thermal Cracking Fundamentals 2 © Michael T. Klein et al. Thermal Cracking: Elementary Steps 1. Bond Fission R - R' R• + R'• Primary 2. Hydrogen Transfer Radical Allowed R• + R'H RH + R'• R' • 3. Scission R + • Can Continue Bond 4. Radical Recombination/Disproportionation R• + R'• R - R' Recombination R + O' Disproportion Kinetics - SSA Standard - Long Chains Thermal Cracking Fundamentals 3 - Scission to 1° Radical OK, Not Great © Michael T. Klein et al. Pyrolysis Reaction Families 1. Bond Fission: R 1 - R 2 R1• + R 2• log10 (A/s -1 ) = 16 1, E* = d° (bond strength) Compound d°/kcal mol -1 t1/2 400°C t1/2 750°C Ph-Ph 113.7 1.6 x 10 14 y 37y PhCH 2Ph 89.6 2.4 x 10 6y 2.3h PhCH 2-CH 2Ph 61.4 14h 7.8ms 73.9 19y 3.6s PhCH 2-CH 2CH 2Ph a half life for homolysis ThermalPoutsma, Cracking Fundamentals M. L. Energy Fuels, Vol. 4, No. 2, 1990, p. 1. 4 © Michael T. Klein et al. Pyrolysis Reaction Families 2. Hydrogen Abstraction (Transfer): R 1• + RH R1H + R• log10 (A/l mol -1 s -1 ) = ~8 E*/kcal mol -1 = ~12-20 log10 k400 = 2-5 Polanyi Relation E* = E* 0 - q 11.5 0.25 Thermal Cracking Fundamentals 5 © Michael T. Klein et al. Pyrolysis Reaction Families 3. - scission: bond • • . + -1) = ~ log10 (A/s 14 E*/kcal mol-1= 20-30 log10k400 = 2-5 Thermal Cracking Fundamentals 6 © Michael T. Klein et al. Pyrolysis Reaction Families 4. Radical Recombination: R 1• + R 2• R1 - R 2 -1 -1 log10 (A/l mol s ) ~ 9.5 1 E*/kcal mol -1 ~ 0 log10 k400 ~ 9.5 1 Thermal Cracking Fundamentals 7 © Michael T. Klein et al. Pyrolysis Reaction Families 5. Radical Disproportionation: R 1• + R 2• R1H + O 2 6. Radical Hydrogen Transfer: H Ar CH 2 • + Ar CH Ar H 2 + • H • Ar CH 2 + 7. Isomerization (1,5 Shift): H • • Thermal Cracking Fundamentals 8 © Michael T. Klein et al. Summary of Key Points Alkyl Aromatics log10 AE* log10 k400 (s-1 orl/mols) Fission 16 1 d° (68-69) -7 to -10 Hydrogen 8 12 2-5 Abstraction Scission 14 20-30 2-5 Term 08 9.5 1 Thermal Cracking Fundamentals 9 © Michael T. Klein et al. Heteroatoms 1. Replacement of C with N and O leads to similar pathways, faster kinetics 2. Replacement with S leads to new paths, faster kinetics Thermal Cracking Fundamentals 10 © Michael T. Klein et al. Thermal Cracking Compound Classes Hydrocarbons Alkyl Aromatics Alkyl Naphthenics Hydroaromatics 1: Tridecyl Cyclohexane (TDC) 1: Pentadecyl Benzene (PDB) 1: 2 Ethyl Tetralin (2 ET) 2: Phenyl Dodecane (PDD) 2: Tetralin 3: Butyl Benzene (BB) 3: Methyl Tetralin (MT) 4: 2-Ethyl Naphthalene (2-EN) 5: (2)-(3-phenylpropyl)-Naphthalene (PPN) 6: Dodecyl Pyrene (DDP) 7: 1,3-bis-(1-pyrene) propane (BPP) Thermal Cracking Fundamentals 11 © Michael T. Klein et al. 1: Pyrolysis of Alkyl Aromatics: Experimental Results COMPOUND PYROLYZED TEMPERATURE BATCH MAJOR PRODUCTS MINOR PRODUCTS REFS HOLDING TIME Pentadecyl Benzene 375°C - 450°C 10 - 180 Min. Toluene, n-alkanes C 6 - C14 1 (PDB) Tetradecene, Styrene, o-olefins C 6 - C14 Tridecane 1-Phenyl alkanes Phenyl Dodecane 400°C 30 - 240 Min. Toluene, 1-Undecene, n-alkanes C 6 - C12 1 (PDD) Styrene, n-Decane o-olefins C 6 - C11 1-Phenyl alkanes Butyl Benzene 400°C 30 - 210 Min. Toluene, Styrene Ethyl Benzene 1 (BB) Propyl Benzene 2-Ethyl Naphthalene 400°C 15 - 120 Min. 2-Methyl Naphthalene, -- 1 (2-EN) Naphthalene, 2-Ethyl Tetralin 2-(3-Phenylpropyl) 350°C - 425°C 10 - 60 Min. Toluene, 2-isopropyl - 2 Naphthalene 2-Vinyl -Naphthalene, Naphthalene, 1-3 (PPN) Styrene, diphenyl propane 2-Methylnaphthalene Dodecyl Pyrene 350°C - 425°C 60 - 180 Min. Pyrene, Dodecane, Alkanes C 6 - C12 2 (DDP) Methyl pyrene, -olefins, alkylpyrene Nonane Thermal Cracking Fundamentals 12 © Michael T. Klein et al. Elucidation of Pathways: A PDB Pyrolysis Example (Ref.1) SELECTIVITY BEHAVIOR PRODUCT INITIAL SELECTIVITY WITH IN CONVERSION REMARKS Toluene 0.35 Constant - Primary Product - No Secondary Reactions 1- Tetradecene 0.35 With Conversion - Primary Product - Toluene and Tetradecene form in 1 step - Secondary decomposition Styrene 0.12 With Conversion - Primary Product - Secondary Reactions Tridecane 0.12 Constant - Primary Product - No Secondary RXN - Forms with Styrene in 1 step Ethyl Benzene 0.02 With Conversion - Forms Mostly From Secondary Reactions Thermal Cracking Fundamentals 13 © Michael T. Klein et al. PDB Thermolysis at 375°C Major Products Temporal Variations 0.08 0.07 0.06 TOL 0.05 0.04 Molar Yield 0.03 TET 0.02 TRI 0.01 STY + 0.00 + + + + + 0 20 40 60 80 100 120 140 160 180 Time (minutes) TOL+ STY 1-TET TRI Thermal Cracking Fundamentals 14 © Michael T. Klein et al. PDB Selectivity to Products 0.26 0.24 0.22 0.20 0.18 C13 0.16 0.14 0.12 0.10 0.08 0.06 STY Selectivity (mol yield/conv) 0.04 0.02 0.00 0.0 0.2 0.4 0.6 Conversion Thermal Cracking Fundamentals 15 © Michael T. Klein et al. PDB Selectivity to Products 0.60 0.50 0.40 TOL 0.30 0.20 1 TET Selectivity (mol yield/conv) Selectivity (mol 0.10 0.00 0.0 0.2 0.4 0.6 Conversion Thermal Cracking Fundamentals 16 © Michael T. Klein et al. A Concerted Mechanism CH2 CH2 CH H 2 CH2 CH H CH C12H 25 H C12H 25 CH 3 CH2 CH2 H + H CH C12H 25 Thermal Cracking Fundamentals 17 © Michael T. Klein et al. A Radical Mechanism • • () + () 13 11 • () () + 13 + 13 • () 13 + () • 10 • • () 11 + () 10 • • () + 13 Products Thermal Cracking Fundamentals 18 © Michael T. Klein et al. Comparison of Mechanisms Observed Radical Concerted First Order Yes Yes TOL = 1-TET Yes Yes STY = TRI Yes --- No Phenylbutene Yes --- High Yield C 14 Yes --- High TOL Yield No Yes Thermal Cracking Fundamentals 19 © Michael T. Klein et al. PDB Thermolysis at 400°C Deuterium Incorporation 1.0 0.9 0.8 0.7 0.6 0.5 0.4 Deuterium Incorporation 0.3 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1/R (moles PDB/mole d12-tetralin) Thermal Cracking Fundamentals 20 © Michael T. Klein et al. "Lumping" via Elementary Steps: A PDB Pyrolysis Example • Three Parallel Chains: Facility of H-abstraction vs. -Scission 1: Highly Facile H-abstraction • 13 + • (Resonance Stabilized) Styrene tridecane - Radical 2: Highly Facile -Scission • • 11 + (Resonance tetradecene Stabilized) 3: Minor Pathways Thermal Cracking Fundamentals 21 © Michael T. Klein et al. Chain Propagation Steps for PDB (R) Pyrolysis k11 1 + R 1H + 1 k1 k12 1 1 + Q 1 k21 1 + R 1H + 2 2 + R 2H + 1 k' k' 12 k 21 1 + R R + 2 22 2 + R R + 1 2 + R 2H + 2 k2 2 + Q 2 k23 2 k32 2 + R 2H + 3 3+ R 3H + 2 k'23 k'32 2 + R R + 3 k33 3 + R R + 2 3 + R 3H + 3 k3 k 3 3 + Q 3 31 k13 + R H + 3 3 1 1+ R 1H + 3 k' 31 k'13 + R R + 3 1 1 + R R + 3 Thermal Cracking Fundamentals 22 © Michael T. Klein et al. Reaction Model and Experimental Results: Points of Comparison • Kinetics - Pseudo-First-Order Rate Constant • Selectivity dTOL dSTY - dt = 1kR dt = 2kR - k 2STY so for primary pyrolysis dTOL 1 = dSTY 2 Thermal Cracking Fundamentals 23 © Michael T. Klein et al. PDB Concentration (mol/l) -4 10 Apparent Rate Constant (1/s) -5 10 -3 0 1 10 10 -2 10 -1 10 10 PDB Concentration (mol/l) Thermal Cracking Fundamentals 24 © Michael T. Klein et al. PDB Concentration 7 1 / 2 (expt) 6 dTOL/dSTY (model) 5 4 dTOL dSTY = 1 2 3 2 1 0 10-3 10-2 10-1 100 101 PDB Concentration (mol/l) Thermal Cracking Fundamentals 25 © Michael T. Klein et al. PDD Thermolysis Pathway k1 () MINOR 10 1 + () + 2 + + PRODUCTS 8 () 7 3 k 2 k3 k4 Thermal Cracking Fundamentals 26 © Michael T. Klein et al. Free-Radical Pyrolysis of PDD 1.0 0.9 0.8 0.7 0.6 I D 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 12 Thermal Cracking Fundamentals1/R (Moles PDD/Mole 27 tetralin - d ) © Michael T. Klein et al. Variation of k with Alkyl Chain Length kIkHk1/2 k = kT kIk'Hk1/2 k = C1/2 kT where C is the carbon number Alkylbenzene Pyrolysis at 400°C -1.0 -1.5 -2.0 k -2.5 g o -3.0 L -3.5 -4.0 -4.5 -5.0 048121620 24 Carbon Number in Alkyl Chain Thermal Cracking Fundamentals 28 © Michael T. Klein et al. Influence of Ring Size 1 • 2-EN Pathway: + + 1 Savage and Klein Thermal Cracking Fundamentals 29 © Michael T. Klein et al. Influence of Ring Size • DDP 2 Pathway: Methyl Vinyl Pyrene Pyrene 1-Undecene decane [1] + + + + minor products Pyrene [2] Dodecane + 2 Savage et al. Thermal Cracking Fundamentals 30 © Michael T. Klein et al. PPN Pyrolysis Pathway 2-VINYL 2-METHYL PPN NAPHTHALENE STYRENE NAPHTHALENE TOLUENE + + 2 + Thermal Cracking Fundamentals 31 © Michael T.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us