Higgs Boson Physics, Part I

Higgs Boson Physics, Part I

Higgs Boson Physics, Part I Laura Reina TASI 2004, Boulder Outline of Part I Understanding the Electroweak Symmetry Breaking as a first step • towards a more fundamental theory of particle physics. The Higgs mechanism and the breaking of the Electroweak Symmetry • in the Standard Model. Toy model: breaking of an abelian gauge symmetry. −→ Quantum effects in spontaneously broken gauge theories. −→ The Standard Model: breaking of the SU(2)L U(1)Y symmetry. −→ Fermion masses through Yukawa-like couplings× to the Higgs field. −→ First step: calculate the SM Higgs boson decay branching ratios. • Some References for Part I Spontaneous Symmetry Breaking of global and local • symmetries: . An Introduction to Quantum Field Theory, M.E. Peskin and D.V. Schroeder . The Quantum Theory of Fields, V. II, S. Weinberg Theory and Phenomenology of the Higgs boson(s): • . The Higgs Hunter Guide, J. Gunion, H.E. Haber, G. Kane, and S. Dawson . Introduction to the physics of Higgs bosons, S. Dawson, TASI Lectures 1994, hep-ph/9411325 . Introduction to electroweak symmetry breaking, S. Dawson, hep-ph/9901280 . Higgs Boson Theory and Phenomenology, M. Carena and H.E. Haber, hep-ph/0208209 Breaking the Electroweak Symmetry: Why and How? The gauge symmetry of the Standard Model (SM) forbids • gauge boson mass terms, but: M ± = 80.426 0.034 GeV and M = 91.1875 0.0021 GeV W ± Z ± ⇓ Electroweak Symmetry Breaking (EWSB) Broad spectrum of ideas proposed to explain the EWSB: • . Weakly coupled dynamics embedded into some more fundamental theory at a scale Λ (probably TeV): ' = Higgs Mechanism in the SM or its extensions (MSSM, etc.) ⇒ Little Higgs models −→ . Strongly coupled dynamics at the TeV scale: Technicolor in its multiple realizations. −→ . Extra dimensions beyond the 3+1 space-time dimensions Different but related ..... Explicit fermion mass terms also violate the gauge symmetry • of the SM: introduced through new gauge invariant interactions, as dictated −→ by the mechanism of EWSB intimately related to flavor mixing and the origin of CP-violation: −→ new experimental evidence on this side will give further insight. The story begins in 1964 . with Englert and Brout; Higgs; Hagen, Guralnik and Kibble Spontaneous Breaking of a Gauge Symmetry Abelian Higgs mechanism: one vector field Aµ(x) and one complex scalar field φ(x): = + L LA Lφ where 1 1 = F µν F = (∂µAν ∂ν Aµ)(∂ A ∂ A ) LA −4 µν −4 − µ ν − ν µ and (Dµ =∂µ + igAµ) µ µ 2 2 =(D φ)∗D φ V (φ)=(D φ)∗D φ µ φ∗φ λ(φ∗φ) Lφ µ − µ − − invariant under local phase transformation, or local U(1) symmetry: L φ(x) eiα(x)φ(x) → 1 Aµ(x) Aµ(x)+ ∂µα(x) → g Mass term for Aµ breaks the U(1) gauge invariance. Can we build a gauge invariant massive theory? Yes. Consider the potential of the scalar field: 2 2 V (φ)= µ φ∗φ + λ(φ∗φ) where λ>0 (to be bounded from below), and observe that: 250000 300000 200000 200000 150000 100000 100000 50000 0 0 ±10 ±10 ±15 ±15 ±10 ±10 ±5 ±5 ±5 ±5 phi_2 0 0phi_1 phi_2 0 0phi_1 5 5 5 5 10 10 10 10 15 15 µ2 >0 unique minimum: µ2 <0 degeneracy of minima: → → µ2 φ∗φ =0 φ∗φ= − 2λ µ2 >0 electrodynamics of a massless photon and a massive scalar • −→ field of mass µ (g = e). − µ2 <0 when we choose a minimum, the original U(1) symmetry • −→ is spontaneously broken or hidden. µ2 1/2 v 1 φ0 = = φ(x)= φ0 + (φ1(x)+ iφ2(x)) −2λ √2 −→ √2 µ ¶ ⇓ 1 1 1 1 = F µν F + g2v2AµA + (∂µφ )2 + µ2φ2 + (∂µφ )2 + gvA ∂µφ + ... L −4 µν 2 µ 2 1 1 2 2 µ 2 massive vector field massive scalar field Goldstone boson Side| remark: The{z φ2 field actually} | generates{z the} correct| transverse{z } structure for the mass term of the (now massive) Aµ field propagator: i kµkν Aµ(k)Aν ( k) = − gµν + h − i k2 m2 − k2 ··· − A µ ¶ More convenient parameterization (unitary gauge): i χ(x) e v U(1) 1 φ(x)= (v + H(x)) (v + H(x)) √2 −→ √2 The χ(x) degree of freedom (Goldstone boson) is rotated away using gauge invariance, while the original Lagrangian becomes: g2v2 1 = + AµA + ∂µH∂ H + 2µ2H2 + ... L LA 2 µ 2 µ which describes now the dynamics of a¡ system made of: ¢ a massive vector field Aµ with m2 =g2v2; • A a real scalar field H of mass m2 = 2µ2 =2λv2: the Higgs field. • H − ⇓ Total number of degrees of freedom is balanced a Non-Abelian Higgs mechanism: several vector fields Aµ(x) and several (real) scalar field φi(x): 1 λ = + , = (Dµφ)2 V (φ) , V (φ)= µ2φ2 + φ4 L LA Lφ Lφ 2 − 2 (µ2 <0, λ>0) invariant under a non-Abelian symmetry group G: a a φ (1 + iαata) φ t =iT (1 αaT a) φ i −→ ij j −→ − ij j a a (s.t. Dµ =∂µ + gAµT ). In analogy to the Abelian case: 1 1 (D φ)2 ... + g2(T aφ) (T bφ) Aa Abµ + ... 2 µ −→ 2 i i µ φ =φ 1 min 0 ... + g2(T aφ ) (T bφ ) Aa Abµ + ... = −→ 2 0 i 0 i µ 2 mab | {z } T aφ =0 massive vector boson + (Goldstone boson) 0 6 −→ T aφ =0 massless vector boson + massive scalar field 0 −→ Classical Quantum : V (φ) V (ϕ ) −→ −→ eff cl The stable vacuum configurations of the theory are now determined by the extrema of the Effective Potential: 1 V (ϕ )= Γ [φ ] , φ = constant = ϕ eff cl −VT eff cl cl cl where δW [J] Γ [φ ]= W [J] d4yJ(y)φ (y) , φ (x)= = 0 φ(x) 0 eff cl − cl cl δJ(x) h | | iJ Z W [J] generating functional of connected correlation functions −→ Γ [φ ] generating functional of 1PI connected correlation functions eff cl −→ Veff (ϕcl) can be organized as a loop expansion (expansion inh ¯), s.t.: Veff (ϕcl)= V (ϕcl) + loop effects SSB non trivial vacuum configurations −→ Gauge fixing : the Rξ gauges. Consider the abelian case: 1 µν µ = F F +(D φ)∗D φ V (φ) L −4 µν µ − upon SSB: 1 φ(x)= ((v + φ1(x)) + iφ2(x)) √2 ⇓ 1 1 1 = F µν F + (∂µφ + gAµφ )2 + (∂µφ gAµ(v + φ ))2 V (φ) L −4 µν 2 1 2 2 2 − 1 − Quantizing using the gauge fixing condition: 1 µ G = (∂ A + ξgvφ2) √ξ µ in the generating functional 1 δG Z = C A φ φ exp d4x G2 det D D 1D 2 L− 2 δα Z ·Z µ ¶¸ µ ¶ (α gauge transformation parameter) −→ 1 1 1 G2 = A gµν ∂2 + 1 ∂µ∂ν (gv)2gµν A L− 2 −2 µ − − ξ − ν µ µ ¶ ¶ 1 1 1 ξ (∂ φ )2 m2 φ2 + (∂ φ )2 (gv)2φ2 + 2 µ 1 − 2 φ1 1 2 µ 2 − 2 2 ··· + φ =c ¯ ∂2 ξ(gv)2 1+ 1 c Lghost − − v · µ ¶¸ such that: i kµkν iξ kµkν Aµ(k)Aν ( k) = − gµν + − h − i k2 m2 − k2 k2 ξm2 k2 − A µ ¶ − A µ ¶ i φ (k)φ ( k) = − h 1 1 − i k2 m2 − φ1 i φ (k)φ ( k) = c(k)¯c( k) = − h 2 2 − i h − i k2 ξm2 − A Goldtone boson φ2, longitudinal gauge bosons ⇐⇒ The Higgs sector of the Standard Model : SSB SU(2)L U(1)Y U(1)Q × −→ Introduce one complex scalar doublet of SU(2)L with Y =1/2: + φ µ 2 2 φ = =(D φ)†Dµφ µ φ†φ λ(φ†φ) à φ0 ! ←→ L − − a a a a where D φ =(∂ igA τ ig0Y B ), (τ =σ /2, a=1, 2, 3). µ µ − µ − φ µ The SM symmetry is spontaneously broken when φ is chosen to be (e.g.): h i 1/2 1 0 µ2 φ = with v = − (µ2 < 0,λ> 0) h i √2 λ à v ! µ ¶ The gauge boson mass terms arise from: µ 1 a a bµ b µ 0 (D φ)†Dµφ + (0 v) gAµσ + g0Bµ gA σ + g0B + −→ ··· 8 à v ! ··· 2 ¡ ¢ ¡ ¢ 1 v 2 1 2 2 2 2 3 2 + g (A ) + g (A ) +( gA + g0B ) + −→ ··· 2 4 µ µ − µ µ ··· £ ¤ And correspond to the weak gauge bosons: 1 1 2 v W ± = (A A ) MW = g µ √2 µ ± µ −→ 2 0 1 3 2 2 v Z = (gA g0Bµ) MZ = g + g0 µ 2 2 µ 2 g + g0 − −→ p p 0 while the linear combination orthogonal to Zµ remains massless and corresponds to the photon field: 1 3 Aµ (g0A + gBµ) MA =0 2 2 µ g + g0 −→ Notice: using thep definition of the weak mixing angle, θw: g g0 cos θw = , sin θw = 2 2 2 2 g + g0 g + g0 p p the W and Z masses are related by: MW = MZ cos θw The scalar sector becomes more transparent in the unitary gauge: i ~χ(x) ~τ e v 0 SU(2) 1 0 φ(x)= · φ(x)= √2 à v + H(x) ! −→ √2à v + H(x) ! after which the Lagrangian becomes 2 2 3 1 4 1 2 2 λ 3 1 4 = µ H λvH H = MH H MH H λH L − − 4 −2 − r 2 − 4 Three degrees of freedom, the χa(x) Goldstone bosons, have been 0 reabsorbed into the longitudinal components of the Wµ± and Zµ weak gauge bosons. One real scalar field remains: 2 2 2 the Higgs boson, H, with mass M = 2µ =2λv H − and self-couplings: H H H M 2 M 2 H = 3i H = 3i H − v − v2 H H H µ From (D φ)†D φ Higgs-Gauge boson couplings: µ −→ µ µ V V H M 2 M 2 H V µν V µν =2i v g =2i v2 g ν ν V V H Notice: The entire Higgs sector depends on only two parameters, e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us