Chapter 4 Random Processes

Chapter 4 Random Processes

《Random Signal Processing》 Chapter4 Random Processes Chapter 4 Random Processes Contents 4 Random Processes........................................................................................................................................2 4.1 Definition of a Random Process........................................................................................................2 4.2 Characterization of a Random Process..............................................................................................4 4.2.1 Total Characterization of a Random Process..........................................................................4 4.2.2 First-Order Densities of a Random Process ...........................................................................5 4.2.3 Mean of a Random Process....................................................................................................5 4.2.4 Variance of a Random Process ...............................................................................................5 4.2.5 Second-Order Densities of a Random Process.......................................................................6 4.2.6 Autocorrelation and Autocovariance Functions of Random Process .....................................6 4.2.7 Power Spectral Density of a Random Process........................................................................7 4.2.8 Higher-order Moments ...........................................................................................................7 4.2.9 Higher-order Spectra ..............................................................................................................8 4.2.10 Nth-Order Densities..............................................................................................................8 4.3 Stationarity of Random Process ........................................................................................................8 4.3.1 Wide sense Stationary Random Process.................................................................................8 4.3.2 Properties for Wide Sense Stationary Random Processes ....................................................10 4.4 Examples of Random Processes......................................................................................................10 4.4.1 Straight Line Process............................................................................................................10 4.4.2 Semirandom Binary Transmission process...........................................................................13 4.4.3 Random Binary Transmission Process .................................................................................16 4.4.4 Semirandom Telegragh Waves Process ................................................................................18 4.4.5 Random Telegraph Process ..................................................................................................22 4.4.6 Random Sinusoidal Signals..................................................................................................23 4.4.7 Random Walk Process..........................................................................................................25 4.5 Definite In tegrate of Random Processes ........................................................................................29 4.6 Joint Characterizations of Random Process ....................................................................................31 4.6.1 First-Order Joint Densities ...................................................................................................32 4.6.2 Cross-correlation Function ...................................................................................................32 4.6.3 Cross-covariance Function ...................................................................................................32 4.6.4 Joint Stationarity...................................................................................................................32 4.6.5 Cross-spectral Density..........................................................................................................33 4.7 Gaussian Random Processes ...........................................................................................................33 4.7.1 First-Order Densities for Gaussian Random Processes........................................................33 4.7.2 Second-Order Densities for Gaussian Random Processes....................................................34 4.8 White Random Processes ................................................................................................................34 4.9 ARMA Random Processes ..............................................................................................................35 4.9.1 Moving Average Process, MA(q) .........................................................................................36 4.9.2 Autoregressive Processes, AR(p)..........................................................................................39 4.9.3 Autoregressive Moving Average Process, ARMA (p, q) ......................................................43 4.10 Periodic Random Processes...........................................................................................................47 4.11 Sampling of Continuous Random Processes .................................................................................47 4.12 Ergodic Random Processes ...........................................................................................................48 4.13 Summary .......................................................................................................................................49 Xidian University Liu Congfeng E-Mail:[email protected] Page 1 of 49 《Random Signal Processing》 Chapter4 Random Processes 4 Random Processes 4.1 Definition of a Random Process From chapter 2 and 3 we leaned that an experiment is specified by the three tuple S,, BF P ,where S is a countable or noncountable set representing the outcomes of the experiment, BF is a Borel field specifying the set of events for which consistent probabilities exist, and P is a probability measure that allows the calculation of the probability of all the events in the Borel field. A real random variable X e was defined as a real-valued function of S subject to (a) the event specified by e:() X e x is a member of the BF for all e , thus guaranteeing the existence of the cumulative distribution, and (b) P e: X ( e ) 0 or P e: X ( e ) 0 , or both. If, instead of assigning a real value to each e , a time function X t, e is defined for each e , we say a random process is specified. Roughly speaking, a random process is a family of time functions together with probability measure. For a finite sample space S we can visualize the random process as in Figure 4.1, that of a mapping from the sample space to a space of time waveforms. ei X(t,ei) S Waveform Space Figure 4.1 A Random process viewed as a functional mapping A random process can also be viewed as shown in Figure 4.2. For a particular outcome ei , with probability Pi , the time waveform shown X t, ei occurs. The n time signals represent an ensemble of time waveforms. If we evaluate these time waveforms at t0 , the values on the second column from the right are obtained . Coming down that column of values, we have a mapping from the outcomes on the far left, and this mapping describes a particular random variable X t0 . Similarly a random variable X t1 is defined for the mapping shown at time t1 as in the last column. A simple example of random process will now be given. Xidian University Liu Congfeng E-Mail:[email protected] Page 2 of 49 《Random Signal Processing》 Chapter4 Random Processes Random Random Probability Outcome Random Process Variable Variable P(e) e∈S X(t,e) X(t0,e) X(t1,e) 1 P e 1 1 0.5 -0.6 t -1 1 P e 2 2 -0.5 -0.8 t -1 … … … … … . P e 1 3 3 -0.4 0.0 t -1 t0 t1 Figure4.2 Illustration of a random process as an ensemble of time waveforms and a related sample space and probability measure. It should be noted that a random process X t, e is a function of two variables, t and e , where t is the time variable and e is the outcome variable. For a particular time t t0 , X t0 , e specifies a random variable. If e ei , or the outcome is fixed, then X t, ei is a particular time function called a sample function or realization of the random process. With both t and e fixed, say at t0 and ei , X t0 , e becomes a real number for a real random process or a complex value for a complex random process. As the notation for a random variable is usually a capital letter X ,Y or Z rather than the more formal X e ,Y e , Z e , a random process is usually denoted as X t rather than X t, e . Also, it is common to use a small x or x t , to indicate a particular value of the random variable X or a particular time function of a random process X t , respectively. Such an x t, or X t, ei , is called a sample function or a realization of the process. Also as X t, e is a particular random variable for each t , a common alternative definition of a random process is an indexed set of random variables where t the indexing set. If the index set γ can be put into a one to one correspondence with the set of integers, the random process is called a random sequence or a discrete time random process if t is time. While, if the indexing set takes on a continuum of values, we will call the resulting process a continuous random process or continuous time

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us