Heterogenization of Molecular Organo-Iodine Oxidation Catalysts Through Incorporation in Metal-Organic Frameworks (Mofs): Tackl

Heterogenization of Molecular Organo-Iodine Oxidation Catalysts Through Incorporation in Metal-Organic Frameworks (Mofs): Tackl

Heterogenization of Molecular Organo-Iodine Oxidation Catalysts through Incorporation in Metal-Organic Frameworks (MOFs): Tackling the Problems of Decomposition and Deactivation Through Site-Isolation by Babak Tahmouresilerd, M.S. A Dissertation In Chemistry Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Anthony F. Cozzolino Chair of Committee Michael Findlater Dominick Casadonte Joshua D. Howe Mark Sheridan Dean of the Graduate School August 2020 Copyright 2020, Babak Tahmouresilerd Texas Tech University, Babak Tahmouresilerd, August 2020 ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Anthony Cozzolino for all the help and support during my time in graduate school. I have learned many things from him and been shown a great amount of kindness. I would like to thank Dr. Michael Findlater and Dr. Dominick Casadonte as my committee members for taking the time and effort to review my dissertation. I highly appreciate their support during my Ph.D. degree. I would like to thank all my past and present group members for their help and advice over the last few years. Obtaining a Ph.D. degree alongside living with them in the group provided me with a lot of experiences. I would like to thank Dr. Daniel Unruh, Dr. Piotr Dobrowolski, and Dr. Mike Mayer for providing X-ray crystallography and nuclear magnetic resonance facilities. I appreciate Dr. Hopeweeks’s group, Dr. Zhao, and MADOX center for assisting me for doing some of the important structural characterizations. I highly acknowledge the chemistry graduate student organization (CGSO), Study abroad, and graduate school at Texas Tech University for providing financial aid by giving scholarships. ii Texas Tech University, Babak Tahmouresilerd, August 2020 Table of Contents ACKNOWLEDGMENTS .................................................................................................... ii ABSTRACT ...................................................................................................................... v LIST OF ACRONYMS ...................................................................................................... vi LIST OF TABLES ........................................................................................................... vii LIST OF FIGURES ........................................................................................................ xiv 1. Introduction to Oxidation Catalysts via Hypervalent Iodine ....................... 1 1.1. Hypervalent Iodine Compounds ................................................................................ 1 1.2. Application of Hypervalent Iodine Compounds ........................................................ 3 1.3. Limitations, Drawbacks, and Practical Solution to Overcome .................................. 4 1.4. Metal-organic Frameworks (MOFs) as an Alternative Solution ............................... 5 1.5. Research Objective and Dissertation Overview ...................................................... 20 2. Proving the Concept: MOFs as Supports for Organo-iodine Catalysts .... 22 2.1. Design a MOF to Support Iodine Catalyst .............................................................. 22 2.2. Preparation of MOF Catalysts ................................................................................. 23 2.3. Preliminary Catalyst Evaluation .............................................................................. 23 2.4. Preparation and Characterization of MTV-MOF Catalysts ..................................... 25 2.5. Catalytic Performance MTV-MOF Catalysts .......................................................... 37 2.6. Catalytic Performance MTV-MOF Catalysts in the Oxidation of other Hydroquinones ......................................................................................................... 41 2.7. Effect of Solvent, Terminal Oxidant, and Recycling on Catalytic Oxidation of Hydroquinone .......................................................................................................... 44 2.8. Comparison with Related Systems .......................................................................... 48 2.9. Conclusions ............................................................................................................. 49 2.10. Experimental Details ............................................................................................... 50 3. MOF as Support for Iodine Catalyst: Isoreticular Expansion ................... 93 3.1. Strategy to Open the Pore of MOF for Efficient Reagents Diffusion ..................... 93 3.2. Preparation and Characterization of Iodine Containing Frameworks ..................... 95 3.3. Catalytic Evaluation .............................................................................................. 104 3.4. Evaluation of Other Substrates .............................................................................. 112 3.5. Conclusions ........................................................................................................... 115 3.6. Experimental Details ............................................................................................. 116 4. Iodine Supported MOF: Dearomatization Reaction ................................. 143 4.1. Introduction ........................................................................................................... 143 4.2. Results and Discussion .......................................................................................... 145 4.3. Conclusion ............................................................................................................. 158 4.4. Experimental Details ............................................................................................. 159 5. Current Progress and Future Directions .................................................... 176 5.1. Toward an Asymmetric Catalyst ........................................................................... 176 5.2. The study of Halogen-bonding Interactions of I2BODIPY and Pyridine-type Acceptors ............................................................................................................... 182 6. General Experimental Methods ................................................................... 192 6.1. Powder X-ray Diffraction ...................................................................................... 192 6.2. General Data Collection Single Crystal Diffraction .............................................. 192 6.3. Refinement Details ................................................................................................ 193 6.4. FTIR Spectroscopy ................................................................................................ 193 6.5. NMR Spectroscopy ................................................................................................ 194 6.6. Nitrogen Adsorption .............................................................................................. 194 6.7. Computational Details and Results ........................................................................ 194 7. Summaries and Conclusions ........................................................................ 195 iii Texas Tech University, Babak Tahmouresilerd, August 2020 BIBLIOGRAPHY .................................................................................................... 196 iv Texas Tech University, Babak Tahmouresilerd, August 2020 ABSTRACT The main goal of this research is to investigate metal-organic frameworks (MOFs) as solid supports for molecular organo-iodine catalysts. To achieve this goal a few different strategies are examined. Firstly, using a multivariate strategy, iodine- functionalized Zr and Al-based metal-organic frameworks (MOFs) are prepared. These MOFs were found to be active heterogeneous catalysts for the oxidation of phenol derivatives. Secondly, a combination of a multivariate and isoreticular approach was employed to ensure an ideal balance between the internal surface area and catalytic site in the pores of the frameworks. The impact of increased pore size and the catalytic activity of the MOFs on the oxidation of more challenging phenol derivatives is discussed. The catalytic oxidation using hypervalent iodine supported metal-organic frameworks is further extended to flow chemistry in consideration of the concepts of green chemistry. Lastly, iodine-containing molecules with the ability to switch their electronic properties in response to an external stimulus are explored. These systems potentially can be used for catalysis purposes in the near future. v Texas Tech University, Babak Tahmouresilerd, August 2020 LIST OF ACRONYMS CSD: Cambridge Structural Database 7 DMF: N,N-dimethylformamide 8 EHS: Environmental Health & Safety 157 FTIR: Fourier-transform infrared 9 H2BDC: 1,4-benzene dicarboxylic acid 22 Hyperol: Urea/hydrogen peroxide complex 45 IBA: 2-iodosobenzoic acid 2 IBD: Iodobenzene dichloride 2 IBDA: Iodobenzene diacetate 2 IBX: 2-iodoxybenzoic acid 2 mCPBA: Metachloroperbenzoic acid 3 MOF: Metal-organic framework 5 Oxone: Potassium peroxymonosulfate 3 SEM: Scanning electron microscope 45 Thr: Threonine 174 vi Texas Tech University, Babak Tahmouresilerd, August 2020 LIST OF TABLES 1.1. Names and abbreviations of important hypervalent iodine compound ........................................................................................................... 2 1.2. Representations of nodes,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    228 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us