Hartree-Fock Theory

Hartree-Fock Theory

Hartree-Fock Theory ISTPC Summer School June 14th - 24th 2015 Aussois Vincent Robert, [email protected] UdS - UMR 7177 Laboratoire de Chimie Quantique 1. N-electron problem 2. Independent electron approximation I Non-interacting electrons I Orbitals (AOs and MOs) I Electron-electron interactions I Self-Consistent Field Method I Slater determinant I Hartree-Fock equations I Roothan equations - atomic basis sets I A featuring system : H2 3. General results : Brillouin,Koopmans' theorems 4. Conclusions N-electron Problem N electrons ! fig light particles M ions ! fAg heavy particles N M N M ^ X 1 2 X 1 2 X X ZA H = − ri − rA − 2 2MA riA i=1 A=1 i=1 A=1 N N M M X X 1 X X ZAZB + + rij RAB i=1 j>i A=1 B>A mi =MA ≈ 1=2000 frozen ions : Born-Oppenheimer approximation 1 ! non-independent particles ! rij approximated solution Non-interacting electron Case \ 1 = 0" rij N N X X H^ = h^(i) ! E0 = i i=1 i=1 EE E(N + 1) = E(N) + N+1 convenient and simple, though approximate! Orbital Approximation \electrons in boxes" Atomic Orbitals ! Molecular Orbitals orbital : eigenfunction of a monoelectronic problem Z h^' = ϕ k'k2 = '∗'dr = h'j'i = 1 Linear Combination of Atomic Orbitals (LCAO) N X MO = ci 'i i=1 example 1 : H¨uckel for conjugated systems f2pz g simple zeta example 2 : extended H¨uckel fAOgi multiple zeta 'i = a1exp{−ζ1rg + a2exp{−ζ2rg how do the electrons see each other ? Electron-Electron Interactions \ 1 6= 0" rij Hartree's assumptions : 1. instantaneous interaction ! average interaction spherical for atoms 2. self-consistency f'i g! Coulomb ! h^'~i = i '~i !f '~i g k'~i − 'i k ! 0 3. Pauli exclusion principle \no two electrons with same spin in the same orbital" ! spherical averaging of the Coulomb potential Self-Consistent Field Method atomic calculations - the electrons move independently one from the other : Ψ(fri g; fθi g; fφi g) = '1(r1; θ1; φ1) ··· 'N (rN ; θN ; φN ) ! Hartree product - let us write as for the hydrogen atom : P(r) m m '(r; θ; φ) = r Yl (θ; φ) Yl (θ; φ) : spherical harmonics 0 (e.g. Y0 (θ; φ) ^=1s ) ^ X 1 2 X Z X 1 X X H = − ri − + = fi + gij 2 ri rij i i j>i i j>i P - electrostatic part j>i gij : Z ∗ ∗ 1 'i (r1)'j (r2) 'i (r1)'j (r2)dr1dr2 =( ii; jj): Coulomb integral r12 Spherical Averaging : Hartree's equations δh jHj^ iav = 0 - averaging the charge distribution around r1 : 2 δQ(r1) = Pj (r1)dr1 δQ(r2) δQ(r2) - energy at r2 : r if r1 > r2 and r if r1 < r2 n 1 2 o 1 R r1 R 1 r1 Y0(r1; j) = δQ(r2)dr2 + δQ(r2) dr2 r1 0 r1 r2 - spherically averaged ith and jth charge distributions : Z 1 Z 1Z 1 1 F0(i; j) = δQ(r1)Y0(r1; j)dr1 = δQ(r1) δQ(r2) 0 0 0 rmax 2 ∗ n d li (li +1) Z o − dr 2 + r 2 − r Pi (r) = i Pi (r) ∗ X Z = Z − ri Y0(ri ; j): screening effect j6=i Antisymmetry of the Wave Function 2-electron system - experimental facts : 1s2s ! antisymmetric 1S and symmetric 3S - triplet/singlet spin parts : symmetric/antisymmetric MS = 0 component : α(1)β(2) ± α(2)β(1) triplet : Slater determinant 1 'i (x1) 'j (x1) Ψ(x1; x2) = p with xi = (ri ;!i ) 2 'i (x2) 'j (x2) Note : 'i;j = spin-orbitals - antisymmetry:Ψ( x1; x2) = −Ψ(x2; x1) - Pauli's principle verified : Ψ(x; x) = 0 (identical lines !) Properties-Generalization '(xi ) = '(ri )α(!i ) or '(ri )β(!i ) - Space parts of the wave-functions : jS = 1; MS = 0i = 'i (r1)'j (r2) − 'i (r2)'j (r1) jS = 0; MS = 0i = 'i (r1)'j (r2) + 'i (r2)'j (r1) r1 6= r2 in the triplet - Coulomb interactions larger in S = 0 than in S = 1 - Analytically, E0 − E1 = 2Kij R ∗ ∗ 1 with Kij = ' (r1)' (r2) 'i (r2)'j (r1)dr1dr2 i j r12 = hij j1=rjji i =( ij; ji): exchange integral ! Hund's rule : Smax is favored E S=0 2Kij S=1 Generalization : Slater determinant Starting from 2-electron functions : Ψ1(x1; x2) = 'i (x1)'j (x2)Ψ2(x1; x2) = 'j (x1)'i (x2) 1 'i (x1) 'j (x1) Ψ(x1; x2) = p : Slater determinant 2 'i (x2) 'j (x2) More generally : ' (x ) ' (x ) ··· ' (x ) i 1 j 1 k 1 1 'i (x2) 'j (x2) ··· 'k (x2) Ψ(fxi g) = p . N! . 'i (xN ) 'j (xN ) ··· 'k (xN ) notation : Ψ = j'i 'j ··· 'k j f'j g = orthonormal molecular spin-orbital basis set Hartree-Fock Equations E[f'ag] = h jHj i and h j i = 1 (i) single Slater determinant : Ψ = j'1'2 ··· 'a'b ··· 'N j (ii) δE = 0 under the constraints h'aj'bi = δab N N X X L[f'ag] = E[f'ag] − ba(h'aj'bi − δab) a=1 b=1 =) F^(1)'i (1) = i 'i (1) : Hartree-Fock equations (∼ 1930) F^ = Fock operator ! monoelectronic X F^(1) = h^(1) + J^a(1) − K^a(1) a;occupied Z ^ ∗ −1 Ja(1) = dx2'a (2)r12 'a(2) Z ^ ∗ −1 Ka(1)'i (1) = dx2'a (2)r12 'i (2) 'a(1) J^a = Coulomb, local K^a = exchange, non-local Coulomb, Exchange Operators, Hartree-Fock Potential Coulomb J^b Z ^ ∗ ∗ −1 hajJbjai = dx1dx2'a (1)'b(2)r12 'b(2)'a(1)=( aa; bb) = Jab exchange K^b Z ^ ∗ ∗ −1 hajKbjai = dx1dx2'a (1)'b(2)r12 'a(2)'b(1)=( ab; ba) = Kab hαjβi = 0 ) Kab = 0 for electrons of opposite spins P ^ ^ HF potentialv ^HF = occ Jb − Kb X hajv^HF jai = (aa; bb) − (ab; ba) b;occ ! α and β electrons are not correlated Properties-Resolution - α and β electrons form two discernable sets ^ (K operator ! spin polarization) E - closed-shell systems : Restricted Hartree-Fock N=2 X F^(1) = h^(1) + 2J^a(1) − K^a(1) MOs - hajJ^ajai = hajK^ajai cancellation inv ^HF : no self-interaction - F^ = f (f'a; occg) ) iterative resolution until self-consistency : hijFj^ ji = δij i 1 - along the HF procedure ! v^HF : mean field r12 Roothaan Equations introduction of a basis LCAO M X 'i = cµi χµ M ∼ 1000 µ=1 two M × M matrices must be introduced : Z ∗ Sµν = dr1χµ(1)χν (1) : metric Z ∗ Fµν = dr1χµ(1)F(1)χν (1) : Fock matrix X X Fµν cνi = i Sµν cνi µ ν FC = SC : Roothaan equations Roothaan Equations in Practice non-orthogonal atomic orbitals I Slater type (atomic-like) example : double dz´eta,DZ 'i (r) = a1exp{−ζ1rg + a2exp{−ζ2rg I Gaussian type and contractions I minimal basis sets Slater linear combination of Gaussians X 2 'i (r) = ci exp{−αi r g i I contraction : some of the coefficents are frozen example : 6-31G 6 for the core 3 + 1 for the valence ! split valence Unrestricted Hartree-Fock different α and β spatial forms ^ ^ X h ^ ^ i X ^ Fα(1) = h(1) + Ja,α(1) − Ka,α(1) + Ja,β(1) Nα Nβ σσ σσ αβ ^ ^ Jij ; Kij and Jij : coupling between Fα and Fβ ! How to practically solve FC = SC ? y − 1 Find X such as X SX diagonal ! X = S 2 F 0C 0 = C 0 with F 0 = X yFX ! "standard" eigen-value problem Main drawback of UHF method : hS^2i 6= S (S + 1) ! spin contamination issue H2 as an example - minimal basis set : f1sa; 1sbg = fa; bg '1 = ξ1a + ξ2b '2 = ξ2a − ξ1b from group theory, jξ j = jξ j = p1 1 2 2 '1 = g and '2 = u - self-consistency is automatically achieved Fgu = hujFj^ gi = 0 Fgg = hgjFj^ gi = g Fuu = hujFj^ ui = u u = ? EHF = f (g ; u) ? = h + 2J − K g = hgg + Jgg u uu gu gu Hartree-Fock Energy EHF = hΨjHj^ Ψi with Ψ = jaa · · · j from a "natural" inspection : EH2 = 2hgg +Jgg How does this compare to 2g ? P EH2 = 2g −Jgg ) EHF 6= a;occ a ! X 1 X h i E = h + (aa; bb) − (ab; ba) HF aa 2 a;occ a;b X 1 X h i = − (aa; bb) − (ab; ba) a 2 a;occ a;b 1 X h i − (aa; bb) − (ab; ba) 2 a;b avoids double counting of e-e interactions Brillouin and Koopmans Theorems Single Excited Determinants r y jΨai = ar aajΨHF i ^ r hΨHF jHjΨai = 0 What do we learn from the i ? N N+1 eA = −r eA = EHF − Er N−1 N IP = −a IP = Ea − EHF i calculated for the N-electron system ! Pathology of the Hartree-Fock Solution Does ΨHF = jgg¯j survive as R ! 1 ? Since g = p1 (a+b), Ψ = 1 ja¯aj + jbb¯j+jab¯j + jb¯aj 2 HF 2 Ψ = p1 Ψ + Ψ HF 2 ionic neutral incompatible withΨ ≈ Ψneutral as R ! 1 ! ) \suppress" the ionic contributions : Ψ = λjgg¯j − µjuu¯j Hartree-Fock invalidated : beyond mean field is necessary.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us