Rank Elevation in Two European Ant Species: Myrmica Lobulicornis NYLANDER, 1857, Stat.N

Rank Elevation in Two European Ant Species: Myrmica Lobulicornis NYLANDER, 1857, Stat.N

Myrmecologische Nachrichten 7 1 - 7 Wien, September 2005 Rank elevation in two European ant species: Myrmica lobulicornis NYLANDER, 1857, stat.n. and Myrmica spinosior SANTSCHI, 1931, stat.n. (Hymenoptera: Formicidae) Bernhard SEIFERT Abstract Elevation to species level is performed for Myrmica lobicornis var. lobulicornis NYLANDER, 1857 and Myrmica sabuleti var. spinosior SANTSCHI, 1931. Myrmica lobulicornis is established as senior synonym of M. arduennae var. pyrenaea BONDROIT, 1918, M. lobicornis ssp. alpina STÄRCKE, 1927, and M. lobicornis ssp. apennina STÄRCKE, 1927; and M. lobicornis NYLANDER, 1846, as senior synonym of M. lobicornis ssp. arduennae BONDROIT, 1911, M. lobicornis lobicornis var. lissahorensis STÄRCKE, 1927, M. lobicornis ssp. angustifrons STÄRCKE, 1927, and M. lobicornis st. foreli SANTSCHI, 1931. The use of standardized morphometrics and discriminant functions enabled a safe allocation of any nest sample including the type samples to M. lobulicornis, M. lobicornis and M. wesmaeli BONDROIT, 1918 with an error probability of p < 0.0007. The discrimination between M. sabuleti and M. spinosior was possible in 99 % of 133 nest samples with p < 0.007. The type sample of M. spinosior was allocated with an error probability of p = 0.006. Comparative morphometric and zoogeographical data of the six European species of the M. lobicornis and M. sabuleti complex are given. Key words: Myrmica lobicornis complex, Myrmica sabuleti complex, lectotype fixation, discriminant analysis Dr. Bernhard Seifert, Staatliches Museum für Naturkunde, Postfach 300154, D-02806 Görlitz, Germany. E-mail: [email protected] Introduction Material and Methods Myrmica lobicornis var. lobulicornis NYLANDER, 1857 was Measurements were made on mounted and dried specim- described from Mont-Dore in the Massif Central, France, ens using a goniometer-type pin-holding device, permitting and has been considered conspecific with M. lobicornis endless rotations around X, Y, and Z axes. A Zeiss Jena NYLANDER, 1846 by all contemporary and past authors Technival 2 stereomicroscope (numeric aperture < 0.12) except BONDROIT (1920). This paper presents evidence for was used until the year 1992 and a Wild M10 stereo- a surprisingly distinct external morphology and a charac- microscope (numeric aperture 0.25) after 1992 – both sys- teristic geographic distribution of M. lobulicornis, provid- tems mainly at magnifications of 100 - 225 x. The im- ing a sound basis for considering it a valid species. Myr- provement of microscopic equipment and better know- mica lobulicornis can be termed a montane to subalpine ledge of measuring errors after 1992 reduced measuring sibling species of M. lobicornis, distributed in the Pyrenees, error from 3 µm to 1 µm for smaller structures such as FR the Massif Central, the Alps, and the high northern Apen- and from 5 µm to 3 µm for larger structures such as ceph- nine. Together with M. wesmaeli BONDROIT, 1918, there are alic length. The lower quality data taken before 1993 three species of the M. lobicornis complex in Europe. The (termed here "old data") were not always replaced by rein- taxonomic structure of the M. lobicornis complex from Asia vestigation with the new system (termed here "new data"). Minor across the Caucasus, the Central Asian Mountains To avoid rounding errors, all measurements were recorded to W Siberia is more complicated than in Europe (RAD- in µm even for characters for which a precision of ± 1 µm CHENKO 1994, ELMES & al. 2002) and needs an extended is impossible. investigation with an objective numeric character evalua- tion and assistance by genetic methods. The purpose of this Nineteen standard morphometric characters were investi- paper is to clear up, in a first step, the situation in Europe. gated: Myrmica sabuleti var. spinosior SANTSCHI, 1931, de- CL maximum cephalic length in median line; the head scribed from the French part of the northwestern Pyrenees, must be carefully tilted to the position with the true has never been considered a valid species by any author. maximum. Excavations of occiput and/or clypeus SEIFERT (1988), however, presented a table with signifi- reduce CL. Longitudinal carinae or rugae on anterior cant morphological differences between M. sabuleti and an clypeus are included in the measurement – if exact- entity called "W Mediterranean population of M. sabuleti" ly median, in their full height and, if of doubtful pos- but he did not risk giving the latter a valid taxonomic status. ition, in their half height. A recent reinvestigation of this issue, showing morpholo- CS cephalic size; the arithmetic mean of CL and CW, gical differences stronger than between well-established used as a less variable indicator of body size. species and detecting M. spinosior as the valid name for CW maximum cephalic width; this is in Myrmica al- this sister species, is presented here. ways across the protruding compound eyes. EYE eye-size index: the arithmetic mean of the large SVPS standard viewing positions of scape defined by (EL) and small diameter (EW) of the elliptic com- their position relative to the moving plane of the pound eye is divided by CS, i.e. EYE = (EL + EW) hinge joint between scape and first funiculus seg- / (CL + CW). ment (Fig. 6). Dorsal view d is directed perpen- FL maximum anterior divergence of frontal carinae (= dicular to this moving plane (in this position the maximum distance of frontal lobes; Fig. 5). anterior margins of upper and lower lobe of the dis- FR minimum distance between frontal carinae (Fig. 5). tal scape end are congruent and the basal curvature MetL height of metapleuron including the propodeal lobe of scape is not or only weakly visible). Frontal measured in lateral view perpendicular to the straight view f and caudal view c are within the moving plane section of metapleuro-coxal border (heavy dashed and perpendicular to the longitudinal scape axis – line in Fig. 1). The lower endpoint of measuring line i.e. when the scape is imagined to be directed strict- is the metapleuro-coxal border and the upper one ly laterad from head, viewing position f is the fron- the upper margin of propodeal lobe. The level of the tal and viewing position c the caudal aspect of scape. measuring line is positioned in the middle between SVPS's such as cd and df describe intermediate the anteriormost point of subspinal excavation and viewing positions. the posteriormost point of propodeal lobe (fine The process of discriminating sister species included dashed lines in Fig. 1). the removal of allometric variance by species-specific func- MetSp height of subspinal excavation from upper margin tions valid for species pairs (SEIFERT 2002) and a canoni- of propodeal lobe to lower spine margin measured cal discriminant analysis with a SPSS 10.0 program. Ex- along the dorsal continuation of the measuring line tended tests have shown that allometric corrections im- for MetL (Fig. 1). prove discriminative power when single or very few char- PEA angle formed by the anterior half of the dorsal peti- acters are considered. However, when more characters are olar surface and the dorsal third of petiolar face. If computed in discriminant functions calculating a covari- the dorsal profile of petiolar dome is convex, the ance matrix and when allometries are moderate such as in cord from the centre of petiolar dome to the corner Myrmica, allometries will no longer affect discriminative between dome and anterior profile is taken as re- power. Apparently the covariance calculations compen- ference. sate for allometric variance. As a consequence, allometric PEH maximum petiole height measured perpendicular corrections are only recommended for genera with extreme to a reference line defined as follows: the frontal end- allometries such as Messor or Camponotus or when single point of the reference line is marked by the centre or few characters are considered. Here, I continue to use of the petiole-propodeal junction and the caudal allometric corrections because the calculation system is al- endpoint by the centre of petiole-postpetiolar junc- ready established and because the Eigen values are slightly tion (dark spots in Fig. 2). improved. PEL maximum measurable diagonal petiole length from Size-dependent variance of body ratios (= allometry) the tip of subpetiolar process to the posterodorsal was removed by correction functions describing the aver- corner of the posterior peduncle (Fig. 2). age situation in 28 West Palaearctic species of Myrmica. PEW maximum width of petiole. The size-corrected characters CL / CW1.15 to SP / CS1.15 PoOc postocular distance. Use a cross-scaled ocular mic- describe ratios for the assumption of each specimen hav- rometer and adjust the head to the measuring posi- ing the same size (CS = 1.15 mm). Factors with negative tion of CL. Caudal measuring point: median occipi- / positive signs refer to negative / positive allometries. tal margin; frontal measuring point: median head CL / CW1.15 = 1.0339 * CL / CW / (-0.0592 * CS + 1.1020) at the level of the posterior eye margin. Note that SL / CS1.15 = 0.8074 * SL / CS / (-0.0814 * CS + 0.9010) many heads are asymmetric and average the left and ScLH / CS1.15 = 0.0275 * ScLH / CS / (-0.0166 * CS + right measurement (Fig. 3). 0.0466) PPHL length of longest hair on dorsal postpetiole. FL / CS1.15 = 0.4290 * FL / CS / (0.0200 * CS + 0.4060) PPW maximum width of postpetiole. FR / CS1.15 = 0.3278 * FR / CS / (0.0080*CS + 0.3186) ScLH scape lobe height measured perpendicular to a re- MetL / CS1.15 = 0.2018 * MetL / CS / (0.0028 * CS + 0.1986) ference line at SVPS f or c. Maximum height at MetSp / CS1.15 = 0.1825 * MetSp / CS / (0.0082 * CS + which cuticular projections such as lobes or carinae 0.1731) protrude above the upper profile of scape base. The SP / CS1.15 = 0.3323 * SP / CS / (0.1038 * CS + 0.2129) reference line is the cord of the curved dorsal scape PEH / CS1.15 = 0.3280 * PEH / CS / (-0.0149 * CS + 0.3451) profile stretching from midpoint of scape length to PEL / CS1.15 = 0.4650 * PEL / CS / (-0.0291 * CS + 0.4985) the point just before the projections at scape bend PEW / CS1.15 = 0.2572 * PEW / CS / (-0.0229 * CS + 0.2835) begin to rise.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us