Structure and Classifications of Lattice Polytopes

Structure and Classifications of Lattice Polytopes

Structure and Classifications of Lattice Polytopes Andreas Paffenholz Technische Universität Darmstadt (Classifications of) Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z August 2, 2016 | TUD | Andreas Paffenholz | 1 (Classifications of) Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I Classifications of subfamilies . by dimension . number of (interior) lattice points . structural properties: . many vertices, h∗-vector, . August 2, 2016 | TUD | Andreas Paffenholz | 1 (Classifications of) Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I Classifications of subfamilies . by dimension . number of (interior) lattice points . structural properties: . many vertices, h∗-vector, . I Why? . experimentation . obtain/test conjectures August 2, 2016 | TUD | Andreas Paffenholz | 1 (Classifications of) Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I Classifications of subfamilies . by dimension . number of (interior) lattice points . structural properties: . many vertices, h∗-vector, . I Why? . experimentation . obtain/test conjectures I How? . computational . enumerate complete subfamilies . PALP, polymake . Graded Rings Database, polymake database polyDB August 2, 2016 | TUD | Andreas Paffenholz | 1 (Classifications of) Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I Classifications of subfamilies . by dimension . number of (interior) lattice points . structural properties: . many vertices, h∗-vector, . I Why? . experimentation . obtain/test conjectures I How? . computational . structural . enumerate complete subfamilies . standard polytope constructions . PALP, polymake . projections, liftings . Graded Rings Database, . common properties polymake database polyDB . ... August 2, 2016 | TUD | Andreas Paffenholz | 1 Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z August 2, 2016 | TUD | Andreas Paffenholz | 2 Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I hyperplane description: d Q = f x j hai , xi ≤ bi g ai 2 Z primitive, bi 2 Z August 2, 2016 | TUD | Andreas Paffenholz | 2 Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I hyperplane description: d Q = f x j hai , xi ≤ bi g ai 2 Z primitive, bi 2 Z . assume irredundant: Each ai defines a facet Fi := fx 2 Q j hai , xi = bi g of Q August 2, 2016 | TUD | Andreas Paffenholz | 2 Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I hyperplane description: d Q = f x j hai , xi ≤ bi g ai 2 Z primitive, bi 2 Z . assume irredundant: Each ai defines a facet Fi := fx 2 Q j hai , xi = bi g of Q I normal fan of Q: d ∗ . fan Σ ⊆ (R ) with rays a1, ... , am . rays form cone σ if corresponding facets define face of Q August 2, 2016 | TUD | Andreas Paffenholz | 2 Lattice Polytopes d I lattice polytope: convex hull of finitely many points in Z d Q = conv(v1, ... , vn), vi 2 Z I hyperplane description: d Q = f x j hai , xi ≤ bi g ai 2 Z primitive, bi 2 Z . assume irredundant: Each ai defines a facet Fi := fx 2 Q j hai , xi = bi g of Q I normal fan of Q: d ∗ . fan Σ ⊆ (R ) with rays a1, ... , am . rays form cone σ if corresponding facets define face of Q I polar (dual) polytope: Q_ = f x j hx, vi ≤ 1 8v 2 Q g August 2, 2016 | TUD | Andreas Paffenholz | 2 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d 1 3 ehr (k) = k2 + k + 1 P 2 2 August 2, 2016 | TUD | Andreas Paffenholz | 3 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d 1 3 ehr (k) = k2 + k + 1 P 2 2 August 2, 2016 | TUD | Andreas Paffenholz | 3 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d 1 3 ehr (k) = k2 + k + 1 P 2 2 August 2, 2016 | TUD | Andreas Paffenholz | 3 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d ∗ ∗ X k h (t) h -polynomial of P: ehrP (k)t = I (1 − t)d+1 k≥0 1 3 ehr (k) = k2 + k + 1 P 2 2 August 2, 2016 | TUD | Andreas Paffenholz | 3 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d ∗ ∗ X k h (t) h -polynomial of P: ehrP (k)t = I (1 − t)d+1 k≥0 . h∗ has integral nonnegative coefficients ∗ ∗ ∗ ∗ . h -vector (h0, h1, ... , hd ) 1 3 ehr (k) = k2 + k + 1 P 2 2 August 2, 2016 | TUD | Andreas Paffenholz | 3 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d ∗ ∗ X k h (t) h -polynomial of P: ehrP (k)t = I (1 − t)d+1 k≥0 . h∗ has integral nonnegative coefficients ∗ ∗ ∗ ∗ . h -vector (h0, h1, ... , hd ) ∗ . h0 = 1 ∗ d . h1 = jP \ Z j − d − 1 ∗ d . hd = j int P \ Z j 1 3 ehr (k) = k2 + k + 1 P 2 2 August 2, 2016 | TUD | Andreas Paffenholz | 3 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d ∗ ∗ X k h (t) h -polynomial of P: ehrP (k)t = I (1 − t)d+1 k≥0 . h∗ has integral nonnegative coefficients ∗ ∗ ∗ ∗ . h -vector (h0, h1, ... , hd ) ∗ . h0 = 1 ∗ d . h1 = jP \ Z j − d − 1 ∗ d . hd = j int P \ Z j I lattice polytope Q with normal fan Σ ! 1 2 3 ehrP (k) = k + k + 1 projective toric variety XΣ 2 2 with ample divisior LP August 2, 2016 | TUD | Andreas Paffenholz | 3 Lattice Polytopes d . Ehrhart polynomial ehrP (k) := j k · P \ Z j polynomial of degree d ∗ ∗ X k h (t) h -polynomial of P: ehrP (k)t = I (1 − t)d+1 k≥0 . h∗ has integral nonnegative coefficients ∗ ∗ ∗ ∗ . h -vector (h0, h1, ... , hd ) ∗ . h0 = 1 ∗ d . h1 = jP \ Z j − d − 1 ∗ d . hd = j int P \ Z j I lattice polytope Q with normal fan Σ ! 1 2 3 ehrP (k) = k + k + 1 projective toric variety XΣ 2 2 with ample divisior LP . toric dictionary: properties of variety correpond to properties of polytope August 2, 2016 | TUD | Andreas Paffenholz | 3 Classification of Lattice Polytopes Classify or enumerate complete subfamilies of lattice polytopes August 2, 2016 | TUD | Andreas Paffenholz | 4 Classification of Lattice Polytopes Classify or enumerate complete subfamilies of lattice polytopes . by dimension . my number of (interior) lattice points . by properties of the polytopes . ... August 2, 2016 | TUD | Andreas Paffenholz | 4 Classification of Lattice Polytopes Classify or enumerate complete subfamilies of lattice polytopes . by dimension . my number of (interior) lattice points . by properties of the polytopes . ... Theorem (Hensley; Lagarias & Ziegler) d, m ≥ 1. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points. lattice equivalence: d transformations with affine maps x 7−! Mx + t, M unimodular, t 2 Z . August 2, 2016 | TUD | Andreas Paffenholz | 4 Classification of Lattice Polytopes Classify or enumerate complete subfamilies of lattice polytopes . by dimension . my number of (interior) lattice points . by properties of the polytopes . ... Theorem (Hensley; Lagarias & Ziegler) d, m ≥ 1. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points. lattice equivalence: d transformations with affine maps x 7−! Mx + t, M unimodular, t 2 Z . d ∗ I P empty polytope: int P \ Z = ? () hd = 0. August 2, 2016 | TUD | Andreas Paffenholz | 4 Classification of Lattice Polytopes Classify or enumerate complete subfamilies of lattice polytopes . by dimension . my number of (interior) lattice points . by properties of the polytopes . ... Theorem (Hensley; Lagarias & Ziegler) d, m ≥ 1. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points. lattice equivalence: d transformations with affine maps x 7−! Mx + t, M unimodular, t 2 Z . d ∗ I P empty polytope: int P \ Z = ? () hd = 0. −! different approaches for classifications of empty polytopes and those with interior lattice points. August 2, 2016 | TUD | Andreas Paffenholz | 4 Empty Lattice Polytopes ∗ d ∗ I hd = j int P \ Z j, so hd = 0 iff P is empty −! empty polytopes are filtered by the degree of h∗ (number of trailing zeros in h∗) August 2, 2016 | TUD | Andreas Paffenholz | 5 Empty Lattice Polytopes ∗ d ∗ I hd = j int P \ Z j, so hd = 0 iff P is empty −! empty polytopes are filtered by the degree of h∗ (number of trailing zeros in h∗) −! known classifications for . polytopes for deg h∗ 2 f0, 1g . h∗-vectors for deg h∗ = 2 . h∗-vectors with few nonzero entries August 2, 2016 | TUD | Andreas Paffenholz | 5 Empty Lattice Polytopes ∗ d ∗ I hd = j int P \ Z j, so hd = 0 iff P is empty −! empty polytopes are filtered by the degree of h∗ (number of trailing zeros in h∗) −! known classifications for . polytopes for deg h∗ 2 f0, 1g . h∗-vectors for deg h∗ = 2 . h∗-vectors with few nonzero entries ∗ d . d + 1 − max(k j hk 6= 0) = min(k j int(kP) \ Z 6= ?) August 2, 2016 | TUD | Andreas Paffenholz | 5 Empty Lattice Polytopes ∗ d ∗ I hd = j int P \ Z j, so hd = 0 iff P is empty −! empty polytopes are filtered by the degree of h∗ (number of trailing zeros in h∗) −! known classifications for .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    101 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us