PHYS 6610: Graduate Nuclear and Particle Physics I

PHYS 6610: Graduate Nuclear and Particle Physics I

PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2021 II. Phenomena 4. Deep Inelastic Scattering and Partons Or: Fundamental Constituents at Last References: [HM 9; PRSZR 7.2, 8.1/4-5; HG 6.8-10] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.0 (a) Inelastic Scattering ! Deep Inelastic Scattering DIS 0 0 Breit/Brick-Wall Frame: no energy transfer E −E = 0; momentum transfer maximal~pBreit = −~pBreit. 1 3 Probe wave length lBreit ∼ p =) Dissipate energy and momentum into small volume lBreit. Q2 2 2 −2 −2 Now Q & (3:5GeV) ∼ (0:07fm) rN : l Energy cannot dissipate into whole N in Dt ∼ c [Tho] =) Shoot hole into N, breakup dominates. Deep Inelastic Scattering DIS N(e±;e0)X: inclusive, i.e. all outgoing summed. 2 p · q 0 Now characterised by Lorentz-Invariant: n = = E − E > 0 energy transfer in lab M lab lab 6 2 independent variables6 2 02 2 2 2 2 6 Invariant mass-squared W = p = M + 2p · q + q = M + q (1 − x) out of (q;q2 = −Q2; 6 4 −q2 = Q2 * E0 ;n;W;x) Bjørken-x = 2 [0;1]: inelasticity (elastic scattering: x = 1) lab 2p · q = 2Mn 2 Dimension-less structure functions F1;2(x;Q ) parametrise most general elmag. hadron ME. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.1 (b) Experimental Evidence E;Q2 %: Resonances broaden & disappear into continuum for W ≥ 2:5 GeV total depends only weakly on Q2 at fixed W M =) elastic on point constituents. Mott (elastic point) [HG 6.18] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.2 2 Structure Functions F1;2 are Q -Independent at Fixed Bjørken-x 2 2 2 2 d s 2a 02 2 q F2(Q ;x) 2F1(Q ;x) 2 q (I.7.6) 0 = 2 E cos + tan dW dE lab Q 2 n M 2 Q2 F dimensionless, Q2;n ! 1 but x = fixed: F cannot dep. on Q2, only on dimensionless x. 1;2 2Mn 1;2 SLAC data proton 2 GeV2 < Q2 < 30 GeV2 world data proton, x = 0:225 [HG 6.20] Data: no new scale (e.g. mass, constituent radius)! back-scattering events =) F 6= 0: fermions. 1 [Tho 8.11] 1 =) Interpretation: Virtual photon absorbed by charged, massless spin- 2 point-constituents: PARTONS. Idea: Bjørken 1967; name: Feynman 1969; soon identified with Gell-Mann’s “quarks” of isospin. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.3 (c) Sequence of Events in the Parton Model [HM 9, PRSZ] Scaling: independence of Q2 at fixed x. Not a sign ofQCD, but only that no new scale in nucleon: point-constituents. Scale-Breaking as sign of “small” interactions between constituents ! QCD’s DGLAP-WW (Part III) 1 =) DIS is elastic scattering onP ARTONS: charged, m ≈ 0 spin- 2 point-constituents. Problem: Partons not in detector −!Confinement hypothesis (later). =) Assume that collision proceeds in two well-separated stages: (1) Parton Scattering: Timescale in Breit frame: struck parton partons Dx 1 fm γ t ≈ ≈ l ≈ 0:05 for Q2 (4GeV)2. rearrange parton c Q c into =) Photon interacts with one parton near-instantaneously, hadrons takes snapshot of parton configuration, frozen in time. partons in nucleon spectator partons (2) Hadronisation: final-state interactions rearrange partons into hadron fragments, covert collision energy into new particles (inelastic!). 1 fm Much larger timescale thadronisation ≈ ≈ 0:2 tparton. typ. hadron mass∼ 1GeV c =) Describe Scattering and Hadronisation independently of each other, no interference. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.4 (d) Relating Elastic Parton Scattering & Nucleon DIS What is the Bjørken-x? – The Infinite Momentum Frame ? m Problem: Transverse momenta~pq of partons sum to zero, but cannot simply infer them from p ! parton momentum parton momentum 2 Solution: Use W;Q ! 1 to boost qµ along N-momentum axis~p N momentum N momentum Lorentz boost into Infinite Momentum Frame IMF. against q µ k boost k ? Transverse parton momenta unchanged, but longitudinal now pq −! g pq M;j~pq j. ? =) Transverse motion time-dilated: Hadronisation indeed much slower: rearranging by~pq ! 0. IMF is also a Breit/Brick-wall frame: =) Parton carries momentum fraction 0 ≤ x ≤ 1 of total nucleon momentum. ! Assume Elastic Scattering on Parton: (x p)2 = (x p + q)2 =) 2x p · q + q2 = 0; (x p)2 cancels. −q2 Q2 Bjørken-x = fraction of hadron momentum which is carried by =) x = = = x: b 2p · q 2M n parton struck by photon in Infinite Momentum Frame IMF. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.5 No, Not That IMF – And Not That IMF Either PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.6 2 1 2 2 Q 2 d s(Q ;x = p·q ) Z d s(xp) Sum cross sections, =) 2 = dx q(x) 0 ∑ 0 elastic dW dE all partons q dW dE no QM interference. inel 0 on parton 2 2 2 Q p!xp Q Q p!xp with d[1 − ] −! d[1 − ] = xd [x − ] and M2 ≡ p2 −! (xp)2 = x 2M2 2p · q 2xp · q 2p · q | {z } = d(x − x): parton momentum must match exp. kinematics 1 2 2 2 Z 2 d s(Q ;x) 2a 2 q 02 2 x x Q 2 q 0 = 2 cos E dx ∑ Zq q(x) + 2 2 tan d(x − x) dW dE inel Q 2 all partons q n x 2M n 2 0 | {z } = x=M slaughter d distribution 2 2 2 d s(Q ;x) 2a 2 q 02 2 x 1 2 q 0 = 2 cos E × ∑ Zq q(x) + tan dW dE inel Q 2 all partons q n M 2 Compare Elastic and Inelastic Cross Sections more careful: [HM ex. 9.3ff; CL] Idea: DIS = incoherent superposition of elastic scattering in IMF on individual partons. =) Relate Inelastic to Elastic Cross Section em ! em on Point-Fermion in lab frame: 2 ! 0 2 ds Za 2 q E Q 2 q 0 E elastic (I.7.4): = cos 1 + tan with E = dW 2 q 2 E 2M2 2 E el 2E sin 2 1 + M (1 − cosq) q use −Q2 ≡ q2 = (k − k0)2 = −2k · k0 = −2EE0(1 − cosq) = −4EE0 sin2 m ! 0! 2 e 2 0 2 0 2 d s 2Za E 2 q E Q 2 q 0 E =) = cos 1 + tan d[E − ] E0 Q2 E M2 E dW d el 2 2 2 1 + M (1 − cosq) PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H. W. Grießhammer, INS, George Washington University II.4.7 2 1 2 2 Q 2 d s(Q ;x = p·q ) Z d s(xp) Sum cross sections, =) 2 = dx q(x) 0 ∑ 0 elastic dW dE all partons q dW dE no QM interference. inel 0 on parton 2 2 2 Q p!xp Q Q p!xp with d[1 − ] −! d[1 − ] = xd [x − ] and M2 ≡ p2 −! (xp)2 = x 2M2 2p · q 2xp · q 2p · q | {z } = d(x − x): parton momentum must match exp. kinematics 1 2 2 2 Z 2 d s(Q ;x) 2a 2 q 02 2 x x Q 2 q 0 = 2 cos E dx ∑ Zq q(x) + 2 2 tan d(x − x) dW dE inel Q 2 all partons q n x 2M n 2 0 | {z } = x=M slaughter d distribution 2 2 2 d s(Q ;x) 2a 2 q 02 2 x 1 2 q 0 = 2 cos E × ∑ Zq q(x) + tan dW dE inel Q 2 all partons q n M 2 Compare Elastic and Inelastic Cross Sections more careful: [HM ex. 9.3ff; CL] Idea: DIS = incoherent superposition of elastic scattering in IMF on individual partons. =) Relate Inelastic to Elastic Cross Section em ! em on Point-Fermion in lab frame: 2 0 2 0 2 d s 2Za E 2 q E Q 2 q 0 E elastic (I.7.4): = cos 1 + tan d[E − ] E0 Q2 E M2 E dW d el 2 2 2 1 + M (1 − cosq) E0 E E0 E EE0 use d[E0 − ] = 1 + (1 − cosq) d[E0 − E + (1 − cosq)] E 1 + E (1 − cosq) E M M M | {z } | {z } | {z } 2 = 1 by d -distribution = −n = Q =(2M) Q2 1 Q2 1 Q2 1 = d[n − ] = d[1 − ] = d[1 − ] = d[1 − x] 2M n 2Mn n 2p · q n as expected for elastic scattering X 2 2 2 2 d s 2a 2 q 02 2 1 Q 2 q Q =) 0 = 2 cos E Z + 2 tan d[1 − ] dW dE el Q 2 n 2M n 2 2p · q 2 2 2 2 d s 2a 2 q 02 F2(Q ;x) 2 F1(Q ;x) 2 q inelastic (I.7.6): = cos E + tan d dE0 Q2 2 M 2 = x W inel n z }| { Q2 =) F of elastic on 1 point-fermion with momentum p only dep. on x: F (Q2;x) = Z2 d[1− ] 2 2 2p · q PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2021 H.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us