Towards Fast Puiseux Series Computation

Towards Fast Puiseux Series Computation

Towards fast Puiseux series computation Adrien Poteaux?, Marc Rybowiczy ?: LIFL - Université Lille 1 y: XLIM - Université de Limoges Computer algebra and polynomials Workshop, Linz November 25th, 2013 adrien.poteaux@lifl.fr Puiseux series 1 / 16 Algebraic plane curves: a projective point of view y3 = (α) a number field K Q y2′ F (X ; Y ) K[X ; Y ] y2′′ 2 2 = (x; y) C F (x; y) = 0 C f 2 j g Let x0 C : 2 y2 y1′′ Fiber at x0: (x0) = roots of F (x0; Y ) = 0 . F f g y1′ y1 Regular point : # (x0) = dY . F Critical point : # (x0) < dY . F = roots of RF = ResY (F ; FY ). ) x0 α1 α2 adrien.poteaux@lifl.fr Puiseux series 1 / 16 x0 critical Theorem (Puiseux) 1 k X jk e There are dY seriesY ij (X ) = αik ζ (X x0) i s.t. ei − k=ni F (X ; Yij (X )) = 0 for all 1 j ei , 1 i s, with ≤ ≤ ≤ ≤ ζei primitive ei -th root of unity, ei e1;:::; es partition of dY (ramification indices). Puiseux series: a generalization of formal power series x0 regular ; (x0) = y1; ; yd . F f ··· Y g Theorem (Implicit function theorem) 1 X k There are dY series Yi (X ) = αik (X x0) s.t − k=0 F (X ; Yi (X )) = 0 around x0 and Yi (x0) = yi . adrien.poteaux@lifl.fr Definition 2 / 16 Puiseux series: a generalization of formal power series x0 regular ; (x0) = y1; ; yd . F f ··· Y g Theorem (Implicit function theorem) 1 X k There are dY series Yi (X ) = αik (X x0) s.t − k=0 F (X ; Yi (X )) = 0 around x0 and Yi (x0) = yi . x0 critical Theorem (Puiseux) 1 k X jk e There are dY seriesY ij (X ) = αik ζ (X x0) i s.t. ei − k=ni F (X ; Yij (X )) = 0 for all 1 j ei , 1 i s, with ≤ ≤ ≤ ≤ ζei primitive ei -th root of unity, ei e1;:::; es partition of dY (ramification indices). adrien.poteaux@lifl.fr Definition 2 / 16 Long term goal Puiseux series w w Monodromy group w w Effective Abel-Jacobi theorem .& Computer Algebra Physics Integral basis computation.s KP & KdV equations Algebraic solutions of ODEs Differential Galois theory adrien.poteaux@lifl.fr Motivations 3 / 16 Difficult part is the singular part 1 k X jk e Sij (X x0) = αik ζ (X x0) i − ei − k=ni rij k X jk e = αik ζ (X x0) i + next terms ei − k=ni rij is the regularity index; ri = rij for 1 j ei ≤ ≤ Next terms can be computed using quadratic Newton iterations Kung & Traub 1978, All Algebraic Functions Can Be Computed Fast adrien.poteaux@lifl.fr Singular part 4 / 16 Singulart part computation: the Newton-Puiseux algorithm Newton, 1676 introduction of the concept. ! Puiseux, 1850 rediscovers ; first procedure. ! Chystov, 1986 “Newton-Puiseux bit complexity is polynomial”. ! Duval, 1989 rational algorithm ; arithmetic complexity O(D8). ! Walsh, 2000 bit complexity O~(D36) (classical algorithm). ! Walsh, 1999 polynomial size for rational coefficients, no algorithm. ! Rybowicz & P., 2008 improved arithmetic complexity: O~(D5). ! adrien.poteaux@lifl.fr Newton-Puiseux algorithm 5 / 16 2 Supp(F)= (i; j) N aij = 0 × f 2 j 6 g — (F ): lower part of the convex hullN of Supp(F). Characteristic polynomial: X i−i0 φ∆(T ) = aij T q (i; j)2∆ The Newton-Puiseux algorithm: main tools F (X ; Y ) = Y 7 + Y 5X 2 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 − adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16 — (F ): lower part of the convex hullN of Supp(F). Characteristic polynomial: X i−i0 φ∆(T ) = aij T q (i; j)2∆ Support of a polynomial F (X ; Y ) = Y 7 X 0+Y 5 X 1 2 Y 4X 1+5 Y 3X 4 Y 3X 2+4 Y 2X 2+Y 0X 6 − − 2 Supp(F)= (i; j) N aij = 0 6 × f 2 j 6 g 4 2 1 0 2 3 4 5 7 adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16 Characteristic polynomial: X i−i0 φ∆(T ) = aij T q (i; j)2∆ Newton polygon X i j F (X ; Y ) = aij Y X i; j 2 Supp(F)= (i; j) N aij = 0 6 × f 2 j 6 g (F ) N — (F ): lower part of the convex hullN of Supp(F). 2 1 0 2 4 7 adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16 Characteristic polynomial X i j F (X ; Y ) = aij Y X i; j 2 Supp(F)= (i; j) N aij = 0 × f 2 j 6 g 6 N (F ) — (F ): lower part of the convex hullN of Supp(F). Characteristic polynomial: 2 ∆, slope − m X i−i0 q φ∆(T ) = aij T q 1 (i; j)2∆ 0 i0 = 2 4 7 adrien.poteaux@lifl.fr Newton-Puiseux algorithm 6 / 16 First turn: initial polygon 0(F ) N Rational Newton-Puiseux algorithm D. Duval 1989, Rational Puiseux Expansions For each edge ∆ of (F ) N s Y Mk – φ∆ = φk k=1 l q – For each φk v q m u F (ξ X ; X (ξ + Y )) ∆, slope − m F (X ; Y ) k k q X l with 0 i0 I(F ) ξk s. t. φk (ξk ) = 0, · (u; v) such that uq vm = 1. · − adrien.poteaux@lifl.fr Newton-Puiseux algorithm 7 / 16 Rational Newton-Puiseux algorithm : first turn For each edge ∆ of 0(F ) N s Y Mk – φ∆ = φk k=1 – For each φk F (ξv X q; X m(ξu + Y )) F (X ; Y ) k k X l with ∆, slope − m ξk s. t. φk (ξk ) = 0, q · i0 dY (u; v) such that uq vm = 1. l · − q First turn: initial polygon 0(F ) N adrien.poteaux@lifl.fr Newton-Puiseux algorithm 7 / 16 Pure symbolic computation is costly H(X ; Y ) = (Y 3 X ) ((Y 1)2 X )(Y 2 X 2) + X 2 Y 5 − − − − − 3 RH (X ) = X P(X ), degX (P) = 23; β s.t. P(β) = 0 Singular parts of Puiseux series of H above β: Si (X ) = αi;0, 1 i 4. ≤ ≤ 1 Si (X ) = αi;0 + αi;1(X β) 2 , 5 i 6. − ≤ ≤ Degree of the extension field i = 5; 6: K(αi;0) = K(αi;1) = K(β) extension of degree 23, ! i = 1;:::; 4: [K(αi;0): K(β)] = 4 extension of degree 92, ! Coefficient growth αi;0 rational number with 98 digits, ! αi;1 rational number with 132 digits. ! adrien.poteaux@lifl.fr Newton-Puiseux algorithm 8 / 16 Numerical computations ? Direct computation: almost useless Guessing the structure ? two difficulties: Finding the correct Newton polygon Factorising “well” φ∆ 4 x2 2:0 x + 0:9999 − 2 =? (x 0:99)(x 1:01) − − 1 =? (x 1:)2 − 0 2 4 7 = Multiplicity structure ? ) = Exact informations needed ! ) adrien.poteaux@lifl.fr Newton-Puiseux algorithm 9 / 16 A symbolic-numeric approach: 1 Compute the singular part of Puiseux series modulo a well chosen prime number p This give us the structure of the Puiseux series, thus: Newton polygons, Multiplicity structures of the φ∆. 2 Use this information to conduct a numerical computation of the Puiseux series coefficients. adrien.poteaux@lifl.fr A modular-numeric approach 10 / 16 Modular part: main results Reduction criteria: 1 One can reduce F mod p, 2 p > dY 3 tc(RF ) 0 mod p. 6≡ If p satisfies that: 1 Puiseux series can be reduced modulo p, 2 The structure computed modulo p is the good one. Bounds for p ; log(p) log(D) with probabilistic algorithms. ' References for details: Poteaux & Rybowicz 2008, On the good reduction of Puiseux series and complexity of the Newton-Puiseux algorithm over finite fields ; Poteaux & Rybowicz 2012, On the good reduction of Puiseux series and Applications ; Poteaux & Rybowicz 2011, Complexity bounds for the rational Newton-Puiseux algorithm over finite fields and related problems adrien.poteaux@lifl.fr A modular-numeric approach 11 / 16 Numerical part: following the structure If P(X ) =( X α)m(X β)m =( X γ~)m (X δ~)m, − − − − α γ~ or α δ~ ? $ $ no answer = group of roots dealt together ) We separate the blocs later on: 1 filter according to the Newton polygon (coefficient of F zero or not) 2 filter according to the multiplicity structure first idea = approximate gcd : singular values One example adrien.poteaux@lifl.fr A modular-numeric approach 12 / 16 Fast computation ? 1 Use only “mandatory” monomials 1 Truncating power of X already used in the D8 of Duval, improved in our D5 version, better ? ! relaxed computations (a-posteriori bounds) 2 Reducing the degree in Y After first turn, we only look roots above (0; 0) Get rid of roots above (0; α 6= 0) ? Factorization 2 Fast computation in between two branch separations 2 3 7 4 9 5 11 35 S(X ) = 2 + X X + X +3X 2 +4X X 2 2X + X 2 +7X 6 + ::: − − − adrien.poteaux@lifl.fr A fast algorithm 13 / 16 A new algorithm 1 Substitutions F (X ; Y ) F (X ; Y + Ad −1(X )) Y (compute common terms at once ; less recursive calls) 2 Factorization of the polynomial during the algorithm (Hensel lemma recursive calls with smaller degrees) ! 3 Using relax algorithms. (no a priori bound required) 4 Improved truncation bounds (thanks to relax algorithms). leads to O~(D4) adrien.poteaux@lifl.fr A fast algorithm 14 / 16 Better again ? The idea: all series do not need the same truncations 1 Compute half of the series in O~(D3) (the one that requires the smallest truncations) 2 Factorize F = GH with G corresponding to the computed series, and H to the other ones.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us