New Insight Into the Crystal Chemistry of Uranium and Thorium Borates, Borophosphates and Borate-Phosphates

New Insight Into the Crystal Chemistry of Uranium and Thorium Borates, Borophosphates and Borate-Phosphates

New Insight into the Crystal Chemistry of Uranium and Thorium Borates, Borophosphates and Borate-phosphates Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc. Yucheng Hao aus (Heze, CHINA) Berichter: Prof. Dr. rer. nat. Evgeny V. Alekseev Univ.-Prof. Dr. rer. nat. Dirk Bosbach Univ.-Prof. Dr. rer. nat. Georg Roth Tag der mündlichen Prüfung: 06. Februar 2018 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar © Copyright 2017 Yucheng Hao II New Insight into the Crystal Chemistry of Uranium and Thorium Borates, Borophosphates and Borate-phosphates Abstract This dissertation work is devoted to a systematic study of phase formation, their structures and properties in the AI/AII-U/Th-B-(P)-O system at different conditions. This work resulted in obtaining and characterizing around thirty novel uranium and thorium phases. Among them, several compounds uncovered novel structural topologies and different physicochemical properties. As an example, a lead uranyl borate (LUBO) is the first zeolite- like polyborate material observed in the uranyl oxo-borates system. It possesses a unique boron-oxygen open framework structure with multi-intersection channels. This robust polyborate framework demonstrates high thermal stability up to 690 °C. 3- An introduction of [PO4] ortho-phosphates anions into the above mentioned oxo-borate system leads to the formation of complex novel uranium borophosphates, borate-phosphates and phosphates. Among them, three novel highly porous uranyl borophosphates with unique three dimensional open framework structures have been structurally characterized. One of these phases, namely, Cs3(UO2)3[B(PO4)4]∙(H2O)0.5 has been proven to be a promising ionic exchanger. In the Th-B-O system, a new polymorphic modification of ThB2O5 has been isolated at ambient pressure. A further investigation of the ThB2O5 phase diagram demonstrates very unusual stability ranges of both polymorphic modifications. It has been shown that the nature of the flux plays a crucial role in the formation of both polymorphic modifications. The structures of all materials obtained in above mentioned systems have been determined by single crystal X-ray diffraction (SXRD) with a further characterization by powder X-ray diffraction (PXRD), Infrared (IR)/Raman spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and energy dispersive X-ray spectroscopy (EDS). The computational studies of the phase formation in Th-B-O system have been performed using density functional theory (DFT). The results of the performed study clearly demonstrate that the counter cations play a key role in the structural formation of phases in studied systems. Consequently, the structures of compounds determine their physicochemical properties. III Neue Erkenntnisse in der Kristallchemie von Uran und Thorium Boraten, Borophosphaten und Borat-phosphaten Abstract Ziel dieser Arbeit war es, systematisch das AI/AII-U/Th-B-(P)-O-System im Hinblick auf Phasenbildung, Struktur sowie Eigenschaften zu untersuchen. Hierbei gelang es, 30 neue Uran- und Thorium-Phasen zu entdecken und zu charakterisieren. Einige dieser Phasen zeigen neuartige Strukturtopologien sowie verschiedene physikalisch-chemische Eigenschaften. Ein Beispiel hierfür ist ein Bleiuranylborat (LUBO), welches das erste Zeolith-artige Polyborat-Material im Uranyl-Borat System darstellt. Es besitzt eine einzigartige offene Bor-Sauerstoff Gerüststruktur mit mehrfach kreuzenden Kanälen. Dieses robuste Polyborat-Gerüst zeigt hohe thermische Stabilität bis 690 °C. 3- Die Einführung von [PO4] Orthophosphat Anionen in das oben erwähnte Oxoborat- System führt zur Bildung von komplexen neuen Uranborophosphaten, -boratphosphaten und –phospaten. In diesem System wurden unter Anderem drei neue hochporöse Uranylborophosphate mit einzigartigen offenen dreidimensionalen Gerüststrukturen strukturell charakterisiert. Eine dieser Phasen, Cs3(UO2)3[B(PO4)4]∙(H2O)0.5, zeigt hierbei vielversprechende Ionenaustausch-Eigenschaften. Im Th-B-O-System wurde ein neues Polymorph von ThB2O5 unter Normaldruck isoliert. Eine weitere Untersuchung des Phasendiagramms von ThB2O5 ergab ungewöhnliche Stabilitätsfelder für beide polymorphen Modifikationen. Bei der Bildung beider polymorphen Modifikationen stellte sich heraus, dass die Eigenschaften des jeweils eingesetzten Flussmittels eine zentrale Rolle spielen. Die Strukturen aller oben erwähnten Materialien wurden mittels Röntgen- Einkristalldiffraktometrie (SXRD) bestimmt und im Anschluss wurden die Materialien weiter mit Röntgen-Pulverdiffraktometrie (PXRD), Infrarot (IR)/Raman Spektroskopie, thermogravimetrischer Analyse (TGA), dynamischer Differenzkalorimetrie (DSC) sowie energiedispersiver Röntgenspektroskopie (EDS) untersucht. Die computergestützten Berechnungen im Th-B-O-System wurden mit Hilfe von Dichtefunktionaltheorie (DFT) durchgeführt. Die Ergebnisse dieser Arbeit zeigen eindeutig, dass der Einfluss der Ladungsausgleichs- Kationen eine elementare Rolle in der Strukturgenese der Phasen in den untersuchten Systemen spielt. Infolgedessen zeigt sich, dass die Struktur eines Materials dessen physikalisch-chemischen Eigenschaften bestimmt. IV Contents Contents V 1. Introduction 1 1.1 Basic structural chemistry of uranium and thorium…...….…………………...…………1 1.2 Basic structural chemistry of borates ………………………………….............................4 1.3 Basic structural chemistry of borophosphates and borate-phosphates……..…………5 1.4 Overview of the previously reported uranium and thorium borates……………………7 1.5 Motivation.......................................................................................................................16 2. Experimental Methods and Characterization Techniques 18 2.1 Phase syntheses….………………....................................................................................18 2.2 Ion-exchange experiments……........................................................................................20 2.3 Characterization techniques............................................................................................21 3. Complex Structural Chemistry of Uranyl Borates under Ambient and Extreme Conditions 26 3.1 Introduction...…….…………………………………………………………………….26 3.2 Experiment Section...……… ……………..………….…………………….………….27 3.3 Results and Discussion..…………………….……………………………………….....29 3.4 Conclusions..…………………….……………………………………………………....49 4. Influence of Synthetic Conditions on Chemistry and Structural Properties of Alkaline Earth Uranyl Borates 51 4.1 Introduction...…….…………..………………………………………………………….51 4.2 Experiment Section...………...……………..………….…………………….………….51 4.3 Results and Discussion …………………….……………………………………….....53 4.4 Conclusions…………………..….……………………………………………………....62 5. Complexity Reseaches New Limits: A Zeolitic Uranium Borate 64 5.1 Introduction...…… …………………………………………………………………….65 5.2 Experiment Section...……….……………..………….…………………….………….65 5.3 Results and Discussion …………………….…………………………………………...66 5.4 Conclusions…………………….……………………………………………………....75 6. Highly Porous Alkali-metal Uranyl Borophosphates with Unique 3D Open Framework Structures 77 6.1 Introduction...…….…………………….……………….……………………………….77 6.2 Experiment Section..……….……………..…………………………………….……….77 6.3 Results and Discussion…………………….…………………………………………....79 6.4 Conclusions……….……………….…………………………………………………....90 V 7. Microporous Uranyl Borophosphate with Potential Ionic Exchange Properties 92 7.1 Introduction...…….………..……………………………...…………………………….92 7.2 Experiment Section...………..……………..…………..….………………….………..93 7.3 Results and Discussion …………………….………………………………………....95 7.4 Conclusions……………..……….……………………………………………………..107 8. Which Role do Counter Cation play in the Formation of Actinide Borate-Phosphates? 108 8.1 Introduction...…….……………………………………………….…………………..108 8.2 Experiment Section...……… ……………..………….………………………………108 8.3 Results and Discussion …………………….………………………………………...109 8.4 Conclusions…………………….……………………………………………………..116 9. Flux Induced Polymorphism in ThB2O5 under ambient pressure 118 9.1 Introduction.........……………………………………………...………………………118 9.2 Experiment Section...……...……………….…….……..…..………..……………….118 9.3 Results and Discussion…..….….……………….………………….………...………120 9.4 Conclusions.....……….…….………….………………………………………………132 References………………....…….….………………………………………………….…...133 10. List of Uranyl Phosphates Phases..................................................................................145 Conclusions and outlook………………………………..…………….……………………146 Acknowledgement……………………………………….…………………………………149 Appendix: Papers and conference…………………………….…..……………………....151 VI The list of abbreviations CCI- Cation-cation interaction FBB-Fundamental building blocks BBU-Basic building blocks PBU-Primary building unit CBU-Composite building unit MRs-Membered rings BVS-Bond valence sum PXRD-Powder X-ray diffraction EDS- Energy-dispersive X-ray spectroscopy SEM- Scanning electron microscopy TG-DSC-Thermogravimetry-Differential scanning calorimetry DFT- Density functional theory BPO-Borophosphates HT/HP-High temperature/High pressure LUBO-Lead uranyl borate DT-Double triangle ICSD-Inorganic Crystal Structure Database VDP- Voronoi-Dirichlet polyhedra MOF-Metal of organic framework FIB-Focused ion beams VII Chapter 1. Introduction The 5f-block elements, namely actinides, show great diversity in their crystal

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    158 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us