Fourier Series

Fourier Series

ECE 307 Fourier Series Z. Aliyazicioglu Electrical & Computer Engineering Dept. Cal Poly Pomona Fourier Series Periodic signal is a function that repeats itself every T seconds. x()txtnT=± ( ) T: period of a function, n: integer 1,2,3,… x(t) t x(t) T 2T 3T x(t) t T 2T t T2T 1 Fourier Series Periodic signal can be represented as sum of sinusoidals if the signal is square-integrable over an arbitrary interval (). tT1+ ∫ xt() dt<∞ t1 So, it can be expressed as 2 where π ∞∞ ω0 = T0 x()ta=+00∑∑ ann cos( ntω ) + b sin( ntω 0 ) nn==11 ∞ ω0 fundamental frequency =+ccnt00∑ nncos(ωθ + ) of the periodic function in n=1 [rad/s]. ∞ nfornω ,2,3,4,...= jnω0 t 0 = ∑ Xen are harmonic frequencies n=−∞ Fourier Series The parameters are called Fourier series expansion or coefficients and given by tT 1 10+ axtdt= () 0 ∫ T Where t1 is arbitrary. It 0 t1 tT10+ can be set t = 0 or 2 1 axtntdtn = ()cos(ω0 ) tT= − /2 T ∫ 10 0 t1 n = 1, 2, 3, ... 2 tT10+ bxtntdt= ()sin(ω ) n T ∫ 0 n = 1, 2, 3, ... 0 t1 b 22 θ =−tan n cabnnn=+ n ca00= an 1 tT10+ X = xte() − jnω0 t dt n T ∫ n = ∓∓∓1, 2, 3,... 0 t1 2 Fourier Series Using Euler’s rule, X n can be written as tT10++ tT 10 11 11 Xn =−xt( )cos( nωω00 tdt ) j xt ( )sin( n tdt ) TT∫∫ Xnn=−ajb n 00tt11 22 If x(t) is a real-valued periodic signal, we have * tT tT 10++ 10 11 11jnωω00 t− jn t Xxtedtxtedt==() () Xajb−nn=+ n −n ∫∫ 22 TT00 tt11 * XX−nn= To obtain and 1 Xcen==jθn ,1,2,3 aX= 2Re bX=−2Im nn nn{ } nn{ } 2 Fourier Series Remember that tT10+ cos(ntdtω )= 0 for all n ∫ 0 t1 tT10+ sin(ntdtω )= 0 for all n ∫ 0 t1 tT10+ cos(ntωω ) sin( mtdt )= 0 for all n and m ∫ 00 t1 tT10+ tT10+ cos(ntωω ) cos( mtdt )=≠ 0 for all n m sin(ntωω ) sin( mtdt )=≠ 0 for all n m ∫ 00 ∫ 00 t1 t1 T T ==for all n m = for all n= m 2 2 3 Fourier Series Example: Find the Fourier series of the following periodic signal v(t) Vm V vt()= m t t T T 2T 3T tT+ 111110 T VVT axtdttdttV====() mm2 0 TTTTT∫∫220 m 0 t1 0 22TTVV atntdttntdt==mmcos(ωω ) cos( ) n ∫∫002 TT00 T 21Vtm T =+222cos(ntωω00 ) sin( nt ) Tnωω00 n 0 21Vm 2π 1 =−=222cos(nT ) 22 0 for all n Tnωω00 T n Fourier Series 22TTVV btntdttntdt==mmsin(ωω ) sin( ) n ∫∫002 TT00 T 21Vtm T =−222sin(ntωω00 ) cos( nt ) Tnωω00 n 0 22VTmmπ V =−2 0cos()nT =− forn Tnωπ0 T n The Fourier Series ∞ ∞ VVmm vt()=+ a00∑ bn sin( nω t ) vt()=−∑ sin( nω0 t ) n=1 2 n=1 nπ VV V V vt( )=−mm sin(ωωω t ) − m sin(2 t ) − m sin(3 t ) − ... 223ππ000 π 4 Fourier Series 2π Let’s assume that Vm=2V and T=1ms ωπ0 ==2 1000 rad/s T0 >> Vm=2; >> T=0.001; >> w0=2*pi/T; >> t=0:0.00001:0.002; >> v1=Vm/2-Vm/pi*sin(w0*t); >> plot (t,v1) >> hold on; >> v2=Vm/2-Vm/pi*sin(w0*t)- Vm/(2*pi)*sin(2*w0*t); >> plot (t,v2) >> v3=Vm/2-Vm/pi*sin(w0*t)- Vm/(2*pi)*sin(2*w0*t)- Vm/(3*pi)*sin(3*w0*t); >> plot (t,v3) >> v4=Vm/2-Vm/pi*sin(w0*t)- Vm/(2*pi)*sin(2*w0*t)- Vm/(3*pi)*sin(3*w0*t)- Vm/(4*pi)*sin(4*w0*t); >> plot (t,v4) >> xlabel ('t[s]') >> title('v(t)') Fourier Series V b =− m for n=1,2,3,... n nπ V cab=+=22 m for n=1,2,3,... nnnnπ b ∞ θ =−tann = 90 n vt()=+ c c cos( nω t +θ ) an 00∑ nn n=1 111V 11V Xajbjm jθn m j90 nn=− n = Xcee== 222nπ nn22nπ Xc00= 5 Fourier Series The Effect of symmetry on the Fourier Coefficients Even-function symmetry Even-function is defined as x()txt= (− ) T /2 1 tT10+ 4 0 axtntdt= ()cos(ω ) b = 0foralln axtdt0 = () n ∫ 0 n T ∫ T0 0 0 t1 x(t) t T 2T Fourier Series The Effect of symmetry on the Fourier Coefficients Odd-function symmetry Odd-function is defined as x()txt= −− ( ) tT+ 1 10 4 T0 /2 axtdt= () bxtntdt= ()sin(ω ) 0 ∫ n ∫ 0 an = 0foralln T T0 0 t1 0 x(t) -T T t 6 Fourier Series Example: x(t) A t -t t -T0 1 1 T0 Assume that ,A=1 ,Ts 0 = 4 and ts 1 = 1 Determine Fourier series coefficients of in exponential and trigonometric form. Plot the discrete spectrum of x(t). T /2 x()txt=− ( ) 1 tT10+ 4 0 axtdt= () axtntdtn = ()cos(ω0 ) 0 T ∫ T ∫ 0 0 0 t1 bn = 0foralln Fourier Series T /4 0 Example: 11T /4 adtt==1 0 0/4∫ −T0 TT00 −T0 /4 11TT00 =+= T0 44 2 441T0 /4 antdtnt==1cos(ωω ) sin( ) T0 /4 n ∫ 000 TTn0000 ω 41 2π Tn0 2 π =−=sin(n ) 0 sin TTn2π 42π 00n T0 2222 an =−,0, ,0, ,0, − ,.... ππππ35 7 12 2 2 2 x(ttttt )=+ cos(ωωωω ) − cos(3 ) + sin(5 ) − cos(7 )... 2357ππ0000 π π 7 Fourier Series >> t=0:0.001:8; >> T=4; >> w0=2*pi/T; >> v=1/2+2/pi*cos(w0*t)- 2/(3*pi)*cos(3*w0*t)+2/(5*pi )*cos(5*w0*t)- 2/(7*pi)*cos(7*w0*t); >> plot (t,v) >> xlabel ('t[s]') >> title('v(t)') Fourier Series Example : 111 Xedtee==1 −−jnωωω000 t jn − jn n ∫ 44−1 − jnω0 11 jn jn ωω00− =−ee 22njω0 11sin(nω0 ) ==sin(nω0 ) 22nnωω00 1sin(nn 2ππ /4) 1sin( /2) == 22/42nnππ /2 1 n = sinc( ) 22 sin(π x ) where sinc(x ) = π x 8 Fourier Series ∞∞1 n Example.1: (cont) jnω00 t jnω t xt()==∑∑ Xen sinc() e nn=−∞ =−∞ 22 Since is real and even, n 1 n aX==2sinc()a0 = cn = sinc( ) nn 2 2 2 bXnn=∠=2sin()0 X n θn = 0,π 1 ∞ n x(tnt )=+∑ sinc( )cos(ω0 ) 22n=1 x(t) n=1,3, 5,…has odd numbers’ harmonics. The even numbers’ harmonics are zero. X is always real, Since ω = 2/4π n 0 so that the phase is either zero or π . 1 ∞ nntπ The magnitude of discrete spectrum is xt()=+∑ sinc()cos( ) shown in next page. 222n=1 Fourier Series Example.1: (cont) Xn signal as sinc function >> n=-10:1:10; >> x=0.5*sinc(n/2); >> stem (n,x) >> title('The 1/2*sinc(n/2) signal'); >> xlabel('n'); 9 Fourier Series Example.1: (cont) >> t=-5:0.1:5; >> n=0; >> x=0.5; >> plot (t,x) >> hold on >> n=1; >> an=(sinc(n/2)*cos(2*pi*t*n/4)); >> x=x+an; >> plot (t,x) >> n=3; >> an=(sinc(n/2)*cos(2*pi*t*n/4)); >> x=x+an; >> plot (t,x) >> n=5; >> an=(sinc(n/2)*cos(2*pi*t*n/4)); >> plot (t,x) >> x=x+an; >> plot (t,x) >> n=7; Fourier series approximation >> an=(sinc(n/2)*cos(2*pi*t*n/4)); of signal x(t) for . >> x=x+an; >> plot (t,x,'r') n = 0,1,3,5, and 7 >> title('Fourier Series approximation for Different n values') >> Fourier Series x(t) Example. 2: 1 t -T0 -T0/40 -T0/2 T0 -1 tT 1 10+ axtdt==() 0 0 T ∫ 0 t1 tT10+ 1 jn t X = xte() − ω0 dt n = ∓∓∓1, 2, 3 , . n T ∫ 0 t1 1 TT00/2 X =+edtedt−−jnωω00 t jn t n ∫∫ T0 0/20T0 10 Fourier Series Example. 2: (cont) T /2 T 11−−jnωω00 t0 1 jn t 0 Xen =− e T / 2 Tjn00−−ωω0 jn 0 0 11−−jnωω00 T/2 jn 0 0 1 −− jn ωω 00 T jn 00 T /2 Xeeeen =−−−()() Tjn00−−ωω jn 0 222πππTT00 11−−−jn jn T0 jn Xeee=−+−1 TTT00022 n T n2π 0 j T0 1 Xeee=−+−1 −−jnπ jn2ππ − jn n jn2π 2 Xe=−1 − jnπ n jn2π Fourier Series Example. 2: (cont) n Xn 1 0-j 0.6366 ππ π −−j njnjn 2 0+j0 2 22 2 Xeeen =− jn2π 3 0-j0. 212 4 0+j0 π 2 − jnπ 0-j0. 127 X = en2 sin 5 n nπ 2 n = ±±±1, 2, 3 , . 6 0+j0 7 0-j 0. 0909 π 8 0+j0 ππsin n −−jn jn n Xe==222 esinc( ) 9 0-j0. 0707 n nπ 2 10 0+j0 2 11 0-j 0. 05787 >> n=1:11; >> x=(2./(pi*n)).*(sin(pi/2*n)).*exp(-j*(pi*n/2)); 11 Fourier Series Example. 2: (cont) 11 X =−ajb nn22 n bn=(-2)*imag(x) n 1 2 3 4 5 6 7 8 9 10 11 bn 1.27 0 0.4244 0 0.2546 0 0.1818 0 0.1414 0 0.1157 3 9 7 xt( )=++++ 1.273sinω0000 t 0.4244sin3ωωω t 0.2546sin5 t 0.1818sin7 t .... 4111 xttttt( )=++++ sinωωωω sin3 sin5 sin7 .... 0000 π 357 Fourier Series Example. 2: (cont) >> t=0:0.000001:0.002; >> b1=1.273*sin(2*pi*1000*t); >> plot (t,b1) >> hold on >> b3=0.4244*sin(2*3*pi*1000*t); >> b=b1+b3; >> plot (t,b,'r') >> b5=0.2546*sin(2*5*pi*1000*t); >> b=b1+b3+b5; >> plot (t,b,'g') >> b7=0.18189*sin(2*7*pi*1000*t); >> b=b1+b3+b5+b7; >> plot (t,b,'y') >> b9=0.14147*sin(2*9*pi*1000*t); >> plot (t,b,'m') >> title ('sum (b_n sin(n \omega t)') >> 12 Fourier Series Example.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us