X-Ray Astronomy: Why and How

X-Ray Astronomy: Why and How

X-Ray Astronomy: Why and How Emrah Kalemci Jörn Wilms Sabancı Universitesi University of Erlangen-Nuremberg Black Hole Universe Purpose of this lecture: Why do we do X-Ray Astronomy? • – Accretion on Black Holes – Diagnostic Possibilities How do we do X-Ray Astronomy? • – The need for Space – Balloons, Rockets, Satellites – Detection methods for X-rays and Gamma-rays Literature LONGAIR, M.S., 1992, High Energy Astrophysics, Vol. 1: Particles, Photons, and their Detection, Cambridge: Cambridge Univ. Press, 50e ∼ Good introduction to high energy astrophysics, the 1st volume deals extensively with high en- ergy procsses, the 2nd with stars and the Galaxy. The announced 3rd volume has never ap- peared. Unfortunately, everything is in SI units. TRÜMPER, J., HASINGER, G. (eds.), 2007, The Universe in X-rays, Heidelberg: Springer, 96.25e Recent book giving an overview of X-ray astronomy written by a group of experts (mainly) from Max Planck Institut für extraterrestrische Physik, the central institute in this area in Ger- many. BRADT, H., 2004, Astronomy Methods: A Physical Approach to Astronomical Observations, Cambridge: Cambridge Univ. Press, $50 Good general overview book on astronomical observations at all wavelengths. Introduction 2 Literature CHARLES, P., SEWARD, F., 1995, Exploring the X-ray Universe, Cambridge: Cambridge Univ. Press, out of print Summary of X-ray astronomy, roughly presenting the state of the early 1990s. SCHLEGEL, E.M., 2002, The restless universe, Oxford: Oxford Univ. Press, 32e Popular X-ray astronomy book summarizing results from XMM-Newton and Chandra. ASCHENBACH, B. et al., 1998, The invisible sky, New York: Copernicus Popular “table top” book summarizing the results of the ROSAT satellite, with many beautiful pictures. KNOLL, G.F., 2000, Radiation Detection and Measurement, 3rd edition, New York: Wiley, 126e The bible on radiation detection. If you want one book on detectors, this is it. Introduction 3 Part 1: Why is X-ray and Gamma-Ray Astronomy Interesting? Galactic X-ray binaries: Material flows from normal star via inner Lagrange point onto neutron star or black hole = Formation of a hot ( 107 K) accretion disk ⇒ ∼ = X-rays and gamma-rays. ⇒ M87: Image Credit & Copyright: Adam Block, Mt. Lemmon SkyCenter, U. Arizona Extragalactic Black Holes Credit: X-ray: NASA/CXC/MIT/H.Marshall et al. Radio: F.Zhou, F.Owen (NRAO), J.Biretta (STScI) Optical: NASA/STScI/UMBC/E.Perlman et al. (M87; Perlman et al., 2002) Many of the most extreme processes in the Universe produce broad band radiation. Redshift distribution on an accretion disk (Dauser et al. 2010; submitted) XMM−Newton EPIC−pn Suzaku−XIS 1.3 Ratio Emission lines from close to the black hole are strongly distorted by relativistic effects. 1.0 1.1 1.2 Measurement of the line shape al- lows determination of the param- 0.9 4.0 5.0 6.0 7.0 eters of the black hole and the ac- observed Energy [keV] cretion flow. MCG 6-30-15 − XMM-Newton and Suzaku (Miniutti et al., 2007) .V : `Q].7 1H:C ]V` ]VH 10V • R`:7 ^@V R @V_7 8JV`$V 1H :JR ]VJV `: 1J$ ^ JI T 8 JI_7 – + VCC:` : IQ ].V`V 5 1.1 V R1:`` 5 JV% `QJ :` :JR GC:H@ .QCV 5 :H 10V $:C:H 1H J%HCV15 1J `:RHC% V` .Q $: 5 =V 5 3<4 :` V`$CQ1 8 4C:H@ .QCV C1JV VI1 1QJ VC: ]Q1V`1J$ 1 JVG%C: :JR : =V *G1 :@ <:75 Q0VIGV` .7 ]:HV : `QJQI75 .V : `Q].7 1H:C ]V` ]VH 10V • 3:II:R`:7 ^] @V_7 – V% `QJ :` 5 GC:H@ .QCV 5 $:II:R`:7 G%` 5 J%HCVQR 7J .V 1 8 4V]]QR+:6 RV VH 1QJ Q` .V .Q $:C:67 Q` : 3<48 *G1 :@ <:75 Q0VIGV` Part 2: Tools of the Trade: Satellites Charles & Seward, Fig. 1.12 Earth’s atmosphere is opaque for all types of EM radiation except for optical light and radio. 3 Major contributor at higher energies: photoabsorption ( E− ), esp. from Oxygen (edge at 500 eV). ∝ ∼ = If one wants to look at the sky in other wavebands, one has to go to space! ⇒ ':CCQQJ1J$7 AC1IG :GQ0V @I 8 V :GCV 11JR V`7 .1J ^8 HI_ G% `QJ$ I: V`1:C V`7 C:`$V V`7 R1``1H%C * *G1 :@ <:75 Q0VIGV` Q%JR1J$`QH@V 7 I%1H@5 CQ1 HQ :HHV Q %]]V` : IQ ].V`V 11 . `V% :GCV ^JQ :C1:7 *_ 1J `%IVJ 8 <Q : V 11 . : `16VR ]V`1QR :CCQ11J$ ]Q1J VR QG V`0: 1QJ ^11 .Q% %]V`G :HH%`:H7_8 CV]VJR1J$ QJ 1V1$. 5 H:J $Q %] Q @I :JR :7 .V`V `Q` .%JR`VR Q` VHQJR 8 *G1 :@ <:75 Q0VIGV` 80VJ .Q%$. `QH@V :JR G:CCQJ :`V IQ C7 % VR `Q` V 1J$ JV1 CV VH Q` :JR VCV HQ]V VH.JQCQ$1V 5 :JR V 1J$ V_%1]IVJ GV`Q`V : : VCC1 V C:%JH.5 8 ]VH1:CC7 `QH@V ]C:7VR : 0V`7 1I]Q` :J `QCV 1J .V G1` . :JR RV0VCQ]IVJ Q` R`:7 : `QJQI7 1J :JR * <8 31QHHQJ1 $Q .V QGVC -`1<V `Q` .V -1QJVV`1J$ 1Q`@ ^1JHC%R1J$ R1 HQ0V`7 Q` +HQ R5 .V G`1$. V R`:7 Q%`HV 1J .V @78 AQ%` V 7 Q` <1H@ <Q . H.1CR8 *G1 :@ <:75 Q0VIGV` & *G1 :@ <:75 Q0VIGV` .V`V :`V : `QJQI7 : VCC1 V - !Q C7 ,"8* *G1 :@ <:75 Q0VIGV` "<4#+ #83<, 11$.C7 VHHVJ `1H Q`G1 5 H1VJ 1`1H QJC78 *G1 :@ <:75 Q0VIGV` .7 CQ1 V:` . Q`G1 - 1Q .:`I`%C `:R1: 1QJ GVC V61 7 : @I ^ @I .1H@_ :JR : @I ^ @I .1H@_8 4VCQ1 @I 1 Q@ `Q` : VCC1 V 8 ]`QGCVI 11 . `:R1: 1QJ GVC 7 1 .1J .V GVC 0V`7 .1$. G:H@$`Q%JR5 VJV`$V 1H ]:` 1HCV :``VH VI1HQJR%H Q` RV VH Q` 5 :JR RV$`:RV VCVH `QJ1H H1`H%1 8 GQ0V .V GVC 5 HQ I1H `:7 G:H@$`Q%JR .1$.8 8: 7 `Q` I:JV%0V`1J$5 H.V:] :JR V: 7 Q ]C:HV 1J Q Q`G1 ^QJV ].: V C:%JH._ .7 JQ CQ1 V:` . Q`G1 ● ,:`$V VHC1] V R%V Q V:` .8 #I]Q 1GCV `Q` HQJ 1J%Q% HQ0V`:$V ^8``1H1VJH7 R Q_8 *G1 :@ <:75 Q0VIGV` 8HHVJ `1H Q`G1 7 • !%H. GV V` V``1H1VJH7 :JR HQ0V`:$V8 • 11$.V` Q0V`:CC G:H@$`Q%JR • 11$.V` V6]Q %`V Q `:R1: 1QJ GVC • :$V C:%JH.8 *G1 :@ <:75 Q0VIGV` 86]VJ 10V ]VH1:CQ`G1 • `:1CV`7 `:1C V:` .8 + :7 HQQC5 `V_%1`V I%H. CV C1_%1R 1VC1%I8 +V]:`: V 8 L7V:`8 • :$`:J$V]Q1J + :7 : %J :GCV C:$`:J$V ]Q1J , ^C1@V %J QG V`01J$ +"1"_ Q` , ^C1@V !-_8 VVR :R=% IVJ V0V`7 R:7 R JQ `:R1: 1QJ GVC 5 Q V``1H1VJH78 *G1 :@ <:75 Q0VIGV` XMM-Newton (ESA): launched 10 Dec. 1999 INTEGRAL (ESA): launched 17 Oct 2002 Currently active missions: X-ray Multiple-Mirror Mission (XMM-Newton; ESA), Chandra (USA), International Gamma-Ray Laboratory (INTEGRAL; ESA), Swift (USA), Rossi X-ray Timing Explorer (RXTE) (USA), High Energy Transient Explorer (HETE-2; USA), Fermi (aka GLAST ; USA), High Energy Solar Spectroscopic Imager Spacecraft (RHESSI; USA), Suzaku (Japan, USA), AGILE (Italy). Planned missions: ASTROSAT (India), Spectrum-X-Gamma (Russia/Germany/France), Astro-H (Japan/USA), NuSTAR (USA), GEMS (USA), IXO (USA/ESA/Japan) We’re living in the “golden age” of X-ray and gamma-ray astronomy. R`:7 VCV HQ]V A.:JR`: T %]V`G :J$%C:` !!RV1 QJ5 C:`$V `V QC% 1QJ5 VJV`$7 `V QC% 1QJ8 HQCCVH 1J$ :`V:8 +11` 5 `: `V ]QJ V* *G1 :@ <:75 Q0VIGV` Part 3: Tools of the Trade: Detectors Introduction There are two steps in the X-ray detection process: 1. Collection of X-rays (“imaging”) Wolter telescopes (soft X-rays up to 15 keV) • ∼ Coded Mask telescopes (above that) • Or just use a collimator 2. Detection of X-rays Non-imaging detectors • Detectors capable of detecting photons from a source, but without any spatial resolution = Require, e.g., collimators to limit field of view or use these to form individual pixels. ⇒ Example: Proportional Counters, Scintillators Imaging detectors • Detectors with a spatial resolution, typically used in the IR, optical, UV or for soft X-rays. Gen- erally behind some type of focusing optics. Example: Charge coupled devices (CCDs), Position Sensitive Proportional Counters X-rays: Detection 1 Step 1: Collecting X-rays Imaging Cassegrain telescope, after Wikipedia Reminder: Optical or radio telescopes are usually reflectors: primary mirror secondary mirror detector → → Main characteristics of a telescope: collecting area (i.e., open area of telescope, πd2/4, where d: telescope diameter) • ∼ for small telescopes: angular resolution, • λ θ = 1.22 (1) d but do not forget the seeing! Wolter Telescopes 2 Imaging Optical telescopes are based on principle that reflection “just works” with metal- lic surfaces. For X-rays, things are more complicated. Snell’s law of refraction: α n sin α1 n2 1 1 = = n (2) sin α2 n1 θ where n index of refraction, and α1,2 angle wrt. 1 surface normal. If n 1: Total internal reflection ≫ Total reflection occurs for α2 = 90◦, i.e. for n < n 2 α sin α1 c = n cos θc = n (3) 1 2 , ⇐⇒ with the critical angle θ = π/2 α . c − 1,c Clearly, total reflection is only possible for n < 1 Light in glass at glass/air interface: n = 1/1.6 = θ 50 = principle behind optical fibers.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    70 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us