Sound to Sense, Sense to Sound: a State-Of-The-Art

Sound to Sense, Sense to Sound: a State-Of-The-Art

Sound to Sense, Sense to Sound: A State-of-the-Art *** Draft Version 0.09 *** The first S2S2 Summer School Genova — July 2005 Ed. Marc Leman, Damien Cirotteau DRAFT Contents Introduction 14 1 Sound, sense and music mediation 17 1.1 Introduction ....................................... 17 1.2 Statingtheproblem.................................. 18 1.3 Frommusicphilosophytomusicscience. ....... 19 1.4 Thecognitiveapproach. ...... 21 1.4.1 Pioneers ...................................... 21 1.4.2 Gestalt psychology and systematic musicology . ....... 21 1.4.3 Information theoretical accounts of sense . ...... 22 1.4.4 Phenomenology and new media technology . ..... 23 1.4.5 Computational modelling of music cognition . ..... 23 1.5 Beyondcognition .................................. 24 1.5.1 Subjectivism and postmodern musicology . 25 1.5.2 Embodiedmusiccognition . 25 1.5.3 Musicandemotions ................................ 28 1.5.4 GestureModelling ................................ 28 1 CONTENTS 2 Physicalmodelling:................................. 29 Motortheoryofperception: . 30 1.6 Conclusion....................................... 31 2 Learning music 40 2.1 Implicit processing of musical structures . ......... 41 2.1.1 How do non-musician listeners acquire implicit knowledgeofmusic? . 41 2.1.2 Implicit learning of Western pitch regularities . ......... 41 2.1.3 Connectionist model of musical knowledge representation .......... 43 2.1.4 Studying implicit learning processes with artificial materials......... 45 2.1.5 Implicit learning of new musical systems . ....... 46 2.2 Perspectives in musical learning: using multimedia technologies .......... 51 2.2.1 How optimize learning of Western tonal music . ..... 51 2.2.2 Creating learning multimedia tools for music . ...... 55 Reduction of information and optimisation of presentation forms . 55 Synthesis of knowledge and implementation of continuity . 57 3 From Sound to “Sense” via Feature Extraction and Machine Learning 68 3.1 Introduction ....................................... 68 3.2 Bottom-up Extraction of Descriptors from Audio . ...... 70 3.2.1 Simple Audio Descriptors for MusicClassification . ........ 71 Time-DomainDescriptors . 71 Frequency-DomainDescriptors. 72 3.2.2 Extracting Higher-level Musical Patterns . ...... 73 3.3 Closing the Gap: Prediction of High-level Descriptors via Machine Learning . 75 3.3.1 ClassificationviaMachineLearning . ....... 75 3.3.2 Learning Algorithms Commonly Used in Music Classification........ 77 CONTENTS 3 3.3.3 Genre Classification:Typical Experimental Results . .......... 78 3.3.4 Trying to Predict Labels Other Than Genre . ...... 79 3.4 A New Direction: Inferring High-level Descriptors from Extra-Musical Information 80 3.4.1 Assigning Artists to Genres via Web Mining . ..... 81 3.4.2 Learning Textual Characterisations . ...... 83 3.5 Research and Application Perspectives . .......... 87 4 “Sense” in Expressive Music Performance 95 4.1 Introduction ....................................... 96 4.2 DataAcquisitionandPreparation. ...... 97 4.2.1 Using Specially Equipped Instruments . 98 HistoricalMeasurementDevices . 98 Mechanical and Electro-Mechanical Setups . 98 PianoRollsasDataSource. 99 TheIowaPianoCamera . 100 ContemporaryMeasurementDevices . 100 Henry Shaffer’s Photocell Bechstein . 100 Studies with Synthesiser Keyboards or Digital Pianos . 101 TheYamahaDisklavierSystem . 101 Bosendorfer’sSESystem¨ . 103 4.2.2 MeasuringAudioByHand ............................ 103 4.2.3 Computational Extraction of Expression from Audio . 106 4.2.4 Extracting Expression from Performers Movements . ........108 4.2.5 Extraction of Emotional Content from MIDI and Audio . 109 4.3 Computational Models of Music Performance . 110 4.3.1 ModelingStrategies .............................. 111 CONTENTS 4 AnalysisByMeasurements . 112 AnalysisBySynthesis ...............................113 MachineLearning .................................113 Case-BasedReasoning ...............................114 MathematicalTheoryApproach . 114 4.3.2 Perspectives ................................... 115 ComparingPerformances . 115 Modeling Different Expressive Intentions . 115 ExpressionRecognitionModels. 116 4.4 OpenProblemsandFuturePaths . 116 5 Controlling Sound with Senses and Influencing Senses with Sound 136 5.1 Introduction ....................................... 136 5.2 A conceptual framework for gestural control of interactive systems .........139 5.2.1 SyntacticLayer .................................. 140 5.2.2 SemanticLayer .................................. 143 5.2.3 Connecting Syntax and Semantics: Maps and Spaces . 143 5.3 Methodologies, perspectives, and tools for gesture analysis ..............145 5.3.1 Bottom-upapproach ................................ 145 5.3.2 Subtractiveapproach.............................. 146 5.3.3 Spaceviews .................................... 146 5.3.4 Timeviews ..................................... 147 5.3.5 Examplesofmotiondescriptors . 148 5.3.6 Tools: the EyesWeb open platform . 151 5.3.7 Tools: the EyesWeb Expressive Gesture Processing Library..........154 5.4 Controlofmusicperformance. 156 CONTENTS 5 5.4.1 Introduction..................................... 156 A fuzzy analyzer of emotional expression in music and gestures . 158 Applications using the fuzzy analyser . 162 Summaryanddiscussion . .165 5.4.2 The KTH rule system for music performance . 165 pDM - Real time control of the KTH rule system . 174 Ruleapplication ..............................174 pDMplayer .................................174 pDM Expression mappers . 175 5.4.3 Ahomeconductingsystem ... .... .... .... .... .... .... 176 Gesture cue extraction . 178 Mapping gesture cues to rule parameters . 178 5.5 Controllingsoundproduction. 179 5.5.1 Introduction..................................... 180 Soundandmotion .................................182 Soundandinteraction ...............................183 Examples ......................................184 Controlofmusicalinstruments . 184 Controlofsoundingobjects . 185 5.5.2 DJscratchingwithSkipproof . 185 Overviewandbackground . 186 Stateoftheartinscratchtools . 186 Skipproof’sfeatures ................................187 Implementation of synthesized techniques . 189 Controllingthepatch................................190 Skipproofusedinconcerts . 191 CONTENTS 6 Feedback from the DJ and test persons . 191 Conclusions.....................................192 5.5.3 Virtualairguitar .................................. 193 Introduction.....................................193 Synthesizing the electric guitar . 194 VirtualStratocaster.............................195 Simulation of tube amplifier and loudspeaker . 195 Controllersanduserinterfacing . 196 Datagloves .................................197 Controlsticks ................................197 Hand-trackingbyawebcamcamera . 199 Musicalintelligence . .200 Summaryandconclusion . .201 5.5.4 ThereacTable*................................. 201 Antecedents.....................................202 FMOLandVisualfeedback . 202 TangibleUserInterfaces . 203 Conceptionanddesign...............................204 Everythingispossible . 204 Modular synthesis and visual programming . 205 Objects, connections and visual feedback . 205 ThereacTable*Architecture . 207 Vision ....................................208 Connection manager: dynamic patching . 209 Audiosynthesizer .............................209 Visualsynthesizer .............................211 CONTENTS 7 reacTable*hardware . 211 PerformingwiththereacTable* . 212 Novel and occasional users: discovering the reacTable* . 212 Advanced reactablists: performing and mastering the instrument . 213 Towards the luthier-improviser continuum . 213 The bongosero-karateka model . 214 The caresser-masseur-violinist model . 214 Thepaintermodel .............................214 The reacTable* as a collaborative multi-user instrument . 214 ThereacTable*:Conclusion . 215 5.5.5 Theinteractivebook .............................. 215 Introduction.....................................216 Thehistoryofinteractivebooks. 216 Futureperspectives.................................219 ScenariosDesign ..................................220 Steps .....................................220 Conclusions.....................................221 5.6 Multimodal and cross-modal control of interactive systems . ...........221 5.6.1 Cross-modal processing: visual analysis of acoustic patterns.........222 5.6.2 Cross-modal processing: auditory-based algorithms for motion analysis . 224 5.6.3 Multimodal processing for analysis of touch gestures . .......226 5.6.4 Future perspectives for cross-modal analysis . ........228 5.7 Acknowledgements................................. 229 6 Physics-based Sound Synthesis 241 6.1 Introduction ....................................... 241 CONTENTS 8 6.2 GeneralConcepts .................................. 242 6.2.1 DifferentflavorsofmodelingTasks. 242 6.2.2 Physical domains, systems, variables, and parameters . ............243 6.2.3 Dichotomies, problem definition, and schemes . ........244 6.2.4 Important concepts explained . 247 Physical structure and interaction . 247 Signals, signal processing, and discrete-time modeling . ........247 Linearityandtimeinvariance. 248 Energeticbehaviorandstability . 249 Modularity and locality of computation . 250 Types of complexity in physics-based modeling . 251 6.3 State-of-the-Art ................................... 251 6.3.1 K-models ...................................... 252 Finite differencemodels ..............................252 Mass-springnetworks

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    444 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us