Cleveland State University EngagedScholarship@CSU ETD Archive 2018 Oxidation of Ferrocene Derivatives with Dibenzoyl Peroxide and Meta-Chloroperoxybenzoic Acid Jos M. Halstead Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive Part of the Chemistry Commons, and the Medicine and Health Sciences Commons How does access to this work benefit ou?y Let us know! Recommended Citation Halstead, Jos M., "Oxidation of Ferrocene Derivatives with Dibenzoyl Peroxide and Meta- Chloroperoxybenzoic Acid" (2018). ETD Archive. 1108. https://engagedscholarship.csuohio.edu/etdarchive/1108 This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. OXIDATION OF FERROCENE DERIVATIVES WITH DIBENZOYL PEROXIDE AND META-CHLOROPEROXYBENZOIC ACID JOSHUA M. HALSTEAD Bachelor of Science in Chemistry Cleveland State University May 2011 Master of Science in Chemistry Cleveland State University May 2013 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY DECEMBER 2018 DEDICATION This work is dedicated to Dr. John Masnovi, who sadly passed away shortly before its completion. I will remember him for his insightful instruction, kind demeanor, and willingness to help anyone learn. He will be missed. We hereby approve this dissertation for Joshua M. Halstead Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for The Department of Chemistry and the CLEVELAND STATE UNIVERSITY’S College of Graduate Studies by _________________________________________________________________ Dissertation Chairperson, Dr. W. Christopher Boyd _____________________________________________ Department & Date __________________________________________________________________________ Dissertation Committee Member, Dr. David Ball _____________________________________________ Department & Date ___________________________________________________________________________ Dissertation Committee Member, Dr. Anthony Berdis _____________________________________________ Department & Date ___________________________________________________________________________ Dissertation Committee Member, Dr. Bin Su _____________________________________________ Department & Date ___________________________________________________________________________ Dissertation Committee Member, Dr. Ulrich Zürcher _____________________________________________ Department & Date Student’s Date of Defense: 12/13/2017 ACKNOWLEDGEMENT I would like to thank Dr. Steven Schildcrout for assisting with the Gaussian-based computations referenced in this work. OXIDATION OF FERROCENE DERIVATIVES WITH DIBENZOYL PEROXIDE AND META-CHLOROPEROXYBENZOIC ACID JOSHUA M. HALSTEAD ABSTRACT The chemical oxidation of ferrocene and related derivatives (RFc) via organic peroxides solvated in acetonitrile was studied spectrophotometrically by varying concentration and temperature to determine kinetics and activation parameters. The reaction rate of ferrocene with dibenzoyl peroxide depends strongly on whether electron withdrawing or donating substituents are present. Products were analyzed and the effect of different solvents on reactivity were studied. The rate law was first order in both oxidant and reductant, and steric and solvent effects are consistent with outer- sphere electron transfer (ET) as the rate-controlling step. B3YLP calculations were conducted to determine reorganization energies using Marcus theory and to examine molecular geometry and steric considerations. v TABLE OF CONTENTS Page ABSTRACT ................................................................................................................... v LIST OF TABLES ........................................................................................................ ix LIST OF FIGURES ........................................................................................................ x CHAPTER I. BACKGROUND 1.1 Introduction ............................................................................................. 1 1.2 Ferrocene ................................................................................................. 2 1.3 Responsive Polymers ............................................................................... 6 1.4 Fenton’s Reagent ................................................................................... 10 II. ELECTRON TRANSFER PROCESSES 2.1 Oxidation-Reduction ............................................................................. 14 2.2 Transition State Theory ......................................................................... 15 2.3 Marcus Theory ....................................................................................... 18 2.4 Oxidative Addition ................................................................................ 24 III. EXPERIMENTAL 3.1 Methodology .......................................................................................... 30 3.2 Synthesis Acetylferrocene ..................................................................... 31 3.3 Synthesis Bromoferrocene ..................................................................... 33 3.4 Stabilization of Ferrocenium ................................................................. 35 3.5 Kinetics Procedure ................................................................................. 36 3.6 Product Isolation .................................................................................... 38 vi 3.7 Solvent Effects ....................................................................................... 39 IV. COMPUTATIONAL 4.1 Methodology .......................................................................................... 40 4.2 Calculation of ΔGº ................................................................................. 41 4.3 Calculation of λi ..................................................................................... 42 4.4 Molecular Geometry .............................................................................. 45 V. RESULTS 5.1 Kinetic Results ....................................................................................... 46 5.2 Activation Parameters ........................................................................... 58 5.3 Product Isolation .................................................................................... 59 5.4 Solvent Results ...................................................................................... 64 5.5 Computational Results ........................................................................... 64 5.6 Geometry Results .................................................................................. 66 VI. DISCUSSION AND CONCLUSIONS 6.1 Kinetics Analysis ................................................................................... 73 6.2 Solvent Effects ....................................................................................... 76 6.3 Reorganization Energy .......................................................................... 79 6.4 Coordination Model ............................................................................... 80 6.5 Literature Comparison ........................................................................... 81 6.6 Proposed Oxidative Addition Mechanism ............................................. 83 6.7 Proposed Outer Sphere Electron Transfer Mechanism ......................... 85 6.8 Future Work ........................................................................................... 87 vii REFERENCES ............................................................................................................. 90 viii LIST OF TABLES Table: ....................................................................................................................... Page I. Standard deviations of rate constants for reactions of decamethylferrocene and dibenzoyl peroxide........................................... 54 II. Standard deviations of rate constants for reactions of ferrocene and dibenzoyl peroxide .................................................................................... 55 III. Standard deviations of rate constants for reactions of ethylferrocene and dibenzoyl peroxide ..................................................... 55 IV. Standard deviations of rate constants for reactions of bromoferrocene and dibenzoyl peroxide................................................... 55 V. Standard deviations of rate constants for reactions of decamethylferrocene and mCPBA ............................................................ 56 VI. Calculated activation and reorganization energies.................................... 57 VII. Percent yield of benzoic acid .................................................................... 58 VIII. Effect of solvent on k for decamethylferrocene at 20ºC ........................... 62 IX. Determination of ΔGº ................................................................................ 63 X. Computational results for ΔGº and λ. ........................................................ 63 XI. Determination of λi and λo for ferrocenes solvated in acetonitrile. ........... 64 XII. Effect of solvent on rate constant for DMFc at 20ºC ...............................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages106 Page
-
File Size-