On Some Integrals Involving Laguerre Polynomials of Several Variables

On Some Integrals Involving Laguerre Polynomials of Several Variables

Gen. Math. Notes, Vol. 28, No. 2, June 2015, pp. 21-29 ISSN 2219-7184; Copyright © ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in On Some Integrals Involving Laguerre Polynomials of Several Variables Fadhle B.F. Mohsen 1, Ahmed Ali Atash 2 and Salem Saleh Barahma 3 1Department of Mathematics Faculty of Education-Zingibar, Aden University, Yemen E-mail: [email protected] 2Department of Mathematics Faculty of Education-Shabowh, Aden University, Yemen E-mail: [email protected] 3Department of Mathematics Faculty of Education-Aden, Aden University, Yemen E-mail: [email protected] (Received: 1-1-15 / Accepted: 10-6-15) Abstract The main object of the present work is to derive some general integral formulas (single, double and multiple) involving Laguerre polynomials of several variables. A number of known and new integral formulas involving Laguerre polynomials of two and three variables are obtained as special cases of our general formulas. Keywords: Laguerre polynomials, Hypergeometric functions, Integral formulas, Lauricella's function, Kampé de Fériet function, Exton's functions, Chandel function. 22 Fadhle B.F. Mohsen et al. 1 Introduction In 1991, Ragab [7] defined the Laguerre polynomials of two variables (,)α β Ln (,)x y as follows: n r ()α α β Γ(n +α +1)Γ(n + β +1) (−y) L ()x L(,) (,)x y = n− r (1.1) n ∑ Γ α + − + Γ β + + n! r=0 r! ( n r 1) ( r 1) ()α where Ln ()x is the Laguerre polynomials of one variable [8] The definition (1.1) is equivalent to the following explicit representation of (,)α β Ln (,)x y , given by Ragab [7]: n n− r r s α β (α +1) ( β +1) (−n) y x L(,) (,)x y = n n r+ s (1.2) n 2 ∑∑ α + β + (n !) r=0s= 0 ( 1)s ( 1) r r!! s It may be remarked that (1.2) can be written as α β (α +1) (β +1) L(,) (,)x y = n n Ψ []− n; α +1, β +1;x , y (1.3) n (n !)2 2 Ψ where 2 is the confluent hypergeometric function of two variables [11, p.62] ∞ ()a r s Ψ()m []= r+ s x y 2 a;,;,b c x y ∑ , (1.4) r, s= 0()b r ()c s r! s! 1 , if n = 0 λ = where ()n (1.5) λ(λ +1)(λ + 2)....(λ + n −1) , if n =1,2,3,...... Khan and Shukla [4,p. 163] defined the Laguerre polynomials of several α α (,,)1 ⋯ m variables Ln (,x1 ⋯, xm ) as follows: α α (,1 ⋯⋯,)m Ln (,x1 ⋯, xm ) m m r Π α + − − − − − Π j ( j 1)n n n r1 n r1 ⋯⋯ rm−1 ( n)r +⋯⋯+r xm+1 − j = j=1 1 m j=1 m ∑∑⋯⋯ ∑ m m (1.6) = = = (n!) r1 0r2 0rm 0 Π Π α + rj! ( j 1)m+1 − j j=1 j=1 On Some Integrals Involving Laguerre… 23 m Π α + ( j )1 n = j =1 Ψ()m []− n; α + ,1 ⋯⋯,α + ;1 x ,⋯⋯, x , (1.7) (n !)m 2 1 m 1 m Ψ ()m where 2 is the confluent hypergeometric function of m-variables [11, p.62] ∞ r r ()a + + x 1 x m Ψ()m []= r1 ⋯ rm 1 m 2 a;c1 ,⋯,cm ; x1 ,⋯, xm ∑ ⋯ (1.8) = (c ) ⋯ (c ) r ! r ! r1 ,,⋯ rm 0 1 r1 m rm 1 m The object of this paper is to obtain certain integral formulas involving Laguerre polynomials of several variables ,these integrals are evaluated in terms of Chandel function (c.f.[2, p.90]) and the generalized Kampé de Fériet function of several variables [3, p.28 ] which are defined as follows: ()()k n [ ′ ] )1( EC a,,a b ;c1 ⋯,cn ; x1,⋯, xn ∞ m1 mn (a)m + ⋯+m (')a m + +⋯ +m ()b m +⋯ +m x1 ⋯xn = ∑ 1 k k 1 n 1 n (1.9) m ,,⋯ m =0 (c ) ⋯(c ) m !⋯m ! 1 n 1 m1 n mn 1 n and ′ ()n ′ ()n ()a :(b′) ;⋯ ; ()n ; A:B ;⋯; B [] = A:B ;⋯; B (b ) F x1 ,⋯, xn F x1 ,⋯, xn C: D′;⋯; D()n C: D′;⋯; D()n ()c :(d′);⋯ ;(d ()n ) ; ∞ ′ ()n m1 mn (( a)) + + (( b )) ⋯(( b )) x ⋯x = m1 ⋯ mn m1 mn 1 n ∑ ′ ()n (1.10) = (( c)) + + (( d )) ⋯(( d )) m !⋯m ! m1 ,,⋯ mn 0 m1 ⋯ mn m1 mn 1 n A Π where ((a)) m mean the product (a j) m . j=1 2 Integral Formulas For Re ( λ) > 0; Re ( σ) > 0, we have the following integral formulas involving Laguerre polynomials of several variables: ∞ −σ λ− (α ,,)⋯⋯α β β x 1 1 r γ γ (,,)1 ⋯⋯ s δ δ ∫ e x Lm ( 1x,⋯⋯, r x)Ln ( 1x,⋯⋯, s x) dx 0 Γ()(λ α + )1 ⋯(α +1) (β + )1 ⋯(β + )1 = 1 m r m 1 n s n σ λ r s (m !) (n !) γ γ δ δ ()(r r+ s) − − λ α + α + β + β + 1 r 1 s )1( EC m, n, ; 1 ,1 ⋯, r ,1 1 ,1 ⋯, s ;1 ,⋯, , ,⋯, (2.1) σ σ σ σ 24 Fadhle B.F. Mohsen et al. t σ+ λ −1 σ − λ− (α ,,)⋯⋯α (α + )1 ⋯(α + )1 B(,)σ λ t x 1(t − x) 1 L 1 r (β x,⋯⋯, β x) dx = 1 n r n ∫ n 1 r (n !)r 0 ;0:2 ⋯⋯ 0; − n,σ : − ;⋯⋯ ; − ; F β t ,⋯⋯, β t σ + λ α + α + 1 r (2.2) ;1:1 ⋯⋯ 1; : 1 1;⋯⋯ ; r 1 ; t α α σ −1 − λ−1 ( 1,,⋯⋯ ,r ) γ − γ − ∫ x (t x) Ln ( 1(t x ,) ⋯⋯, r (t x )) dx 0 (α + )1 ⋯(α + )1 B(,)σ λ t λ+ σ −1 = 1 n r n (n !)r ;0:2 ⋯ 0; − n,λ : − − ;⋯; − − ; F γ t ,⋯,γ t (2.3) λ +σ +α +α 1 r ;1:1 ⋯ 1; : 1 1 ;⋯;1 r ; t s r δ ⋯⋯δ α − λ−1 β − µ−1 γ − ν −1 ( 1,,)m ∫∫∫ x (r x) y (s y) z (t z) Ln ( xyz ,⋯⋯, xyz ) dx dy dz 0 0 0 δ + ⋯ δ + α + λ β + µ γ + ν α+ λ β+ µ γ+ ν = ( 1 )1 n ( m )1 n B( 1, )B( ,1 )B( 1, )r s t r (n !) ;0:4 ⋯⋯ 0; − n,α + ,1 β + ,1 γ +1 : − − ;⋯ ; − − ; F rst ,⋯,rst α + λ + β + µ + γ +ν + δ + δ + (2.4) ;1:3 ⋯⋯ 1; ,1 ,1 1: 1 1;⋯ ; m 1 ; tr t1 µ λ − µ λ − (α ,,)⋯α 1 − 1 1 r − r 1 1 r ∫⋯ ∫ x1 (t1 x1) ⋯x1 (tr xr ) Ln ( 1x 1 ,⋯, xr ) dx 1 ⋯dx r 0 0 µ+ λ µ+ λ α + ⋯ α + µ + λ ⋯ µ + λ 1 1 ⋯ r r = ( 1 )1 n ( r )1 n B( 1 ,1 1) B( r ,1 r )t1 tr r (n !) 1: ;1 ⋯⋯ 1; − n: µ +1 ;⋯⋯ ; µ +1 ; F 1 r t ,⋯⋯,t − α + µ + λ + α + µ + λ + 1 r (2.5) 0: ;2 ⋯⋯ 2; : 1 ,1 1 1 1;⋯⋯ ; r ,1 r r 1 ; tr t1 µ λ − µ λ − (α ,,)⋯α 1 − 1 1 r − r 1 1 r γ − γ − ∫⋯ ∫ x1 (t1 x1) ⋯x1 (tr xr ) Ln ( 1(t 1 x1 ,) ⋯, r(t r xr )) dx 1 ⋯dx r 0 0 On Some Integrals Involving Laguerre… 25 µ+ λ µ+ λ α + ⋯ α + µ + λ ⋯ µ + λ 1 1 ⋯ r r = ( 1 )1 n ( r )1 n B( 1 ,1 1) B( r ,1 r )t1 tr r (n !) 1: ;1 ⋯⋯ 1; − n: λ ;⋯⋯ ; λ ; F 1 r γ t ,⋯⋯,γ t − α + µ + λ + α + µ + λ + 1 1 r r (2.6) 0: ;2 ⋯⋯ 2; : 1 ,1 1 1 1;⋯⋯ ; r ,1 r r 1 ; Following integral can be obtained readily from (2.6) as follows: tr t1 µ λ − µ λ − (λ −1,⋯ ,λ − 1) 1 − 1 1 r − r 1 1 r γ − γ − ∫⋯ ∫ x1 (t1 x1) ⋯xr (tr xr ) Ln ( 1(t 1 x1 ,) ⋯, r(t r xr )) dx 1 ⋯dx r 0 0 µ+ λ µ+ λ λ ⋯ λ µ + λ ⋯ µ + λ 1 1 ⋯ r r = ( 1)n ( r) n B( 1 ,1 1) B( r ,1 r )t1 tr µ + λ + µ + λ + ( 1 1 )1 n ⋯( r r )1 n µ+ λ µ +λ × ( 1 1,,⋯⋯ r r ) γ γ Lm ( 1t 1,⋯⋯, rt r ) . (2.7) To obtain the main integral formula (2.1), we consider the left-hand side of (2.1) and using (1.2), then expressing Ψ()m in series forms and changing the order of 2 integration and summation to get (α + )1 ⋯(α +1) (β + )1 ⋯(β + )1 L..H S = 1 m r m 1 n s n (m !)r (n !)s ∞ p1 pr q1 qs (−m) + + (−n) + + γ ⋯γ δ ⋯δ ∑ p1 ⋯ pr q1 ⋯ qs 1 r 1 s = (α + )1 ⋯ (α + )1 (β + )1 ⋯ (β + )1 p !⋯ p !q !⋯q ! p1,⋯ ,pr , q1 ,⋯ ,qs 0 1 p1 r pr 1 q1 s qs 1 r 1 s ∞ (2.8) −σ λ+ + + + + + × ∫ e x x p1 ⋯ pr q1 ⋯ qs dx 0 In (2.8), using the definition of Gamma function and considering the definition (1.4), we get the right- hand side of (2.1). The integrals (2.2) to (2.6) are similarly established and we using the definition of Beta function . 3 Special Cases It is important to note that the above integrals are capable of yielding a number of other integrals formulas, these integral are evaluated in terms of certain 26 Fadhle B.F.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us