Thorium Spectroscopy

Thorium Spectroscopy

Thorium Spectroscopy Tanja E. Mehlstäubler Center for Quantum Engineering and Space Time Research Leibniz Universität Hannover Physikalisch-Technische Bundesanstalt, Braunschweig Department of Time & Frequency Physics with Trapped Charged Particles – Les Houches, 19 January 2012 Outline ͻ Why is nuclear laser spectroscopy difficult? ͻdŚĞůŽǁ-ĞŶĞƌŐLJŝƐŽŵĞƌŝĐƐƚĂƚĞŝŶdŚ-229 ͻdŚ-229 as a precise optical nuclear clock • Application search for D Visible light not matched to energy scales in nucleus Energy scales: Photon in optical range: !Z | 2 eV Nucleus: bound nucleon 'x | 51015 m 2 ǁŝƚŚ ! 'x 'p o 0,83 MeV ! 2 2('x) mp (rest energy of proton: 938 MeV) 10 Atomic shell: bound electron 'x |10 m 2 ǁŝƚŚ 'x 'p o ! 3,8 eV ! 2('x)2 m e (rest energy of electron: 0,51 MeV) Electric field scales inside atom / nucleus q E 2 4SH 0r e- Shell: 10 11 r 10 m E S 1. 4 10 V/m 15 19 Nucleus: r 5 10 m E N 5. 8 10 V/m ůĞĐƚƌŝĐĨŝĞůĚŽĨĞůĞĐƚƌŽŵĂŐŶĞƚŝĐǁĂǀĞŽĨŝŶƚĞŶƐŝƚLJI: 1 E E o I 2. 5 1015 W/cm 2 I H cE 2 L S 2 0 L 32 2 E L E N o I 4. 5 10 W/cm Maximum intensity of short-pulse laser Intensity Limit: ŐĂŝŶďĂŶĚǁŝĚƚŚ ƉŚŽƚŽŶĞŶĞƌŐLJϭͬ;ŵŝŶ͘ǁĂŝƐƚͿ Q 2 I | N hQ 'v max Ph c 2 | area of ampl. medium | 12 N Ph transition cross section 10 24 2 I max | 10 W/cm e- shell-field strength: reachable nuclear electr. field strength: far beyond Mourou et al., Phys. Today 51, 22 (1998) EƵĐůĞƵƐŝƐŶŽƐƵŝƚĂďůĞĂŶƚĞŶŶĂĨŽƌǀŝƐŝďůĞůŝŐŚƚ >ŝĨĞƚŝŵĞĨŽƌƌĂĚŝĂƚŝǀĞĚĞĐĂLJǀŝĂĞůĞĐƚƌŝĐ multipole-radiation of order l: (antenna length = 5 ×10-15 m) 1 P r 2 l r v Z ( ) | 10 8 W E (l ) ! Z O O W E (1 ) | 100 s at 1 eV (Jackson, Classical Electrodynamics) Long-ůŝǀĞĚĞdžĐŝƚĞĚƐƚĂƚĞƐ͗ŝƐŽŵĞƌƐ e.g. Ta-180: natural isomer, ĚĞĐĂLJƐǀŝĂϴƌĂĚŝĂƚŝŽŶ;l =8) at 75.3 keV, half time > 1015 a ! Nuclear spectroscopy still holds record in resolution Mößbauer-spectrum of 93.3 keV resonance of Zn-67 Q 'QQ x Potzel et al., J. Phys., Colloq. 37, 691 (1976) EƵĐůĞŝǁŝƚŚŝƐŽŵĞƌŝĐƐƚĂƚĞƐĂƚůŽǁĞŶĞƌŐŝĞƐ dĐ-99 2150 eV Hg-201 1561 eV W-183 544 eV Energies on the order U-235 73 eV of excitation energy dŚ-229 7.8 eV of electronic shell Outline ͻ Why is nuclear laser spectroscopy difficult? ͻ dŚĞůŽǁ-ĞŶĞƌŐLJŝƐŽŵĞƌŝĐƐƚĂƚĞŝŶdŚ-229 ͻdŚ-229 as a precise optical nuclear clock • Application search for D 229Th: - from 233U D-decay - half-life 7880 years actinides Nuclear structure of thorium-229 since 1970s! Nilsson state classification dǁŽĐůŽƐĞ-lying band-heads: ground state and isomer K. Gulda et al., Nuclear Physics A 703, 45 (2002) Some History dŚĞŽŶůLJŬŶŽǁŶŝƐŽŵĞƌǁŝƚŚĂŶĞdžĐŝƚĂƚŝŽŶĞŶĞƌŐLJŝŶƚŚĞŽƉƚŝĐĂůƌĂŶŐĞ and in the range of outer shell electronic transitions. ͻ Studied by C.W. Reich et al. at INL since the 1970s, ĞƐƚĂďůŝƐŚĞĚƚŚĞůŽǁĞŶĞƌŐLJŝƐŽŵĞƌ͕ from J-spectroscopy: 3.5 ± 1.0 eV, published in 1994 ͻ dŚĞŽƌĞƚŝĐĂůǁŽƌŬďLJ͘s͘dŬĂůLJĂ͕&͘&͘<ĂƌƉĞƐŚŝŶ͕ĂŶĚŽƚŚĞƌƐ isomer lifetime, coupling to electronic excitations (W ΕĨĞǁϭϬϬϬƐ) ͻ &ĂůƐĞĚĞƚĞĐƚŝŽŶƐŽĨŽƉƚŝĐĂůĞŵŝƐƐŝŽŶŝŶƚŚĞh-233 decay chain in 1997/98 ͻ Proposal of nuclear laser spectroscopy and nuclear clock ͘WĞŝŬĂŶĚŚƌ͘dĂŵŵ͕ƉƵďůŝƐŚĞĚŝŶϮϬϬϯ ͻ Unsuccessful search for optical nuclear excitation or decay ͻ More precise energy measurement from J-spectroscopy at LLNL: 7.6 ± 0.5 eV, published in 2007 ͻ 2011: still no direct detection of the optical transition; ĞdžƉĞƌŝŵĞŶƚĂůĞĨĨŽƌƚƐŝŶƐĞǀĞƌĂů ŐƌŽƵƉƐǁŽƌůĚǁŝĚĞ DĞĂƐƵƌĞŵĞŶƚŽĨƚŚĞĞŶĞƌŐLJŽĨƚŚĞdŚ-229 isomer ĞĐŬĞƚĂů͘;>>E>Ϳ͕WŚLJƐ͘ZĞǀ͘>Ğƚƚ͘98, 142501 (2007) J-ƐƉĞĐƚƌŽƐĐŽƉLJŽĨƚǁŽĚĞĐĂLJĐĂƐĐĂĚĞƐ from the 71.82-keV-ůĞǀĞů Isomer energy: Difference of the doublet splittings: 7.6 ± 0.5 eV (corr.: 7.8 ± 0.5 eV, LLNL-Proc-415170) Ϯϵ<ĞsůŝŶĞƐ ϰϮ<ĞsůŝŶĞƐ 'ƌŽƵŶĚƐƚĂƚĞїŝƐŽŵĞƌ͗ƚƌĂŶƐŝƚŝŽŶŝŶƚŚĞǀĂĐƵƵŵ-UV at about 160 nm ǁĂǀĞůĞŶŐƚŚ ͻ Why is nuclear laser spectroscopy difficult? ͻdŚĞůŽǁ-ĞŶĞƌŐLJŝƐŽŵĞƌŝĐƐƚĂƚĞŝŶdŚ-229 ͻ dŚ-229 as a precise optical nuclear clock • Application search for D A high-precision nuclear clock EƵĐůĞĂƌŵŽŵĞŶƚƐĂƌĞƐŵĂůů͘&ŝĞůĚŝŶĚƵĐĞĚƐLJƐƚĞŵĂƚŝĐĨƌĞƋƵĞŶĐLJƐŚŝĨƚƐ can be smaller than in an (electronic) atomic clock. e.g. Zeeman shifts… -27 µN = 5 x 10 :ͬd µ = 9 x 10-24 :ͬd 229mdŚ/ƐŽŵĞƌ B + _3 [631] 2 P=-0.08 PN YуϮ·10-28 e·m2 ' E=7.8 eV M1 transition WуϭϬϬϬ s P=0.4 PN _5 + Q=3.1·10-28 e·m2 2 [633] 229dŚ'ƌŽƵŶĚ^ƚĂƚĞ A high-precision nuclear clock Frequency shifts that only depend on |n,L,S,J> are common in both levels and do not change the transition frequency For structureless point-like nucleus ground and excited state shifts are identical Campbell et al., arXiv:1110.2490v1 (2011) Peik et al., EPL 61, 181 (2003) ŶĂůŽŐŽŶ͗ŽďƐĞƌǀĂƚŝŽŶŽĨƋƵĂŶƚƵŵũƵŵƉƐŝŶƐŝŶŐůĞŝŽŶ Cycling transition for detection Clock transition to ŵĞƚĂƐƚĂďůĞůĞǀĞů Dehmelt et al. 1986 WŽƐƐŝďůĞƌĞĂůŝnjĂƚŝŽŶƐŽĨdŚ-229 nuclear clocks: ͻ Laser-ĐŽŽůĞĚdŚ3+ in an ion trap ͻ dŚŝŽŶƐĂƐĚŽƉĂŶƚŝŶĂƚƌĂŶƐƉĂƌĞŶƚĐƌLJƐƚĂů;ůŝŬĞĂ&2͕>ŝ&ĞƚĐ͘Ϳ Experimental problem: dƌĂŶƐŝƚŝŽŶĞŶĞƌŐLJŬŶŽǁŶŽŶůLJƚŽуϭϬйƵŶĐĞƌƚĂŝŶƚLJ͕ not a system for high resolution spectroscopy yet. džƉĞƌŝŵĞŶƚĂůƉƌŽũĞĐƚƐ͗ Wd͗ ƚƌĂƉƉĞĚdŚ+ ŝŽŶƐ͖dŚ-doped crystals 'ĞŽƌŐŝĂdĞĐŚ͗ ƚƌĂƉƉĞĚdŚ3+ ions UCLA / LANL: dŚ-doped crystals dhsŝĞŶŶĂ͗ dŚ-doped crystals :LJǀćƐŬLJůćͬDĂŝŶnj ZĞƐŽŶĂŶĐĞŝŽŶŝnjĂƚŝŽŶƐƉĞĐƚƌŽƐĐŽƉLJŽĨdŚƌĞĐŽŝůŶƵĐůĞŝ …. EƵĐůĞĂƌĐůŽĐŬǁŝƚŚůĂƐĞƌĐŽŽůĞĚ229dŚ3+ dŚ3+ ƉŽƐƐĞƐƐĞƐĂŵƵĐŚŵŽƌĞƐŝŵƉůĞůĞǀĞůƐĐŚĞŵĞ ;ƐŝŶŐůĞǀĂůĞŶĐĞĞ-) can be laser-cooled using diode lasers & ĚĞƚĞĐƚĞĚǀŝĂƌĞƐŽŶĂŶĐĞĨůƵŽƌĞƐĐĞŶĐĞŝŶƚŚĞƌĞĚŽƌE/Z electronic and nuclear resonances are separated in energy dƌĂƉƉŝŶŐĂŶĚůĂƐĞƌĐŽŽůŝŶŐŽĨdŚ3+ Loading via laser ablation with ns pulsed Nd:YAG (tripled) Trap L = 188 mm r = 3.3 mm, taylored for efficient loading of ablation plume Trapping and cooling 103 – 104 Th3+ ions (Th-229 & Th-232) (enhanced loading efficiency with initial buffer gas cooling) Campbell et al., Phys. Rev.Lett 106, 223001 (2011) dƌĂƉƉŝŶŐĂŶĚůĂƐĞƌĐŽŽůŝŶŐŽĨdŚ3+ Low lying energy levels in 229Th3+ : cooling on 1088 nm line to tens of K cooling to tens of mK on lambda scheme sympathetic cooling on even isotope (no HF!) for lowest temperatures 229Th3+ Laser cooled ion crystals: 232Th3+ Campbell et al., Phys. Rev.Lett 106, 223001 (2011) Ground state in 299dŚ3+ for clock spectroscopy? Clock transition from ground state (5F5/2): With laser cooled and trapped ion fractional frequency inaccuray as low as 10-19 should be possible! or metastable S-state: Campbell et al., arXiv:1110.2490v1 (2011) Peik et al., EPL 61, 181 (2003) Doped solid-ƐƚĂƚĞĐƌLJƐƚĂůƐǁŝƚŚdŚ+ Th+ Doped solid-ƐƚĂƚĞĐƌLJƐƚĂůƐǁŝƚŚdŚ+ Optical Mössbauer Spectroscopy >ĂƐĞƌĞdžĐŝƚĂƚŝŽŶŽĨdŚ-ions in a solid Th4+ їĐŽŵƉĂĐƚŽƉƚŝĐĂůĨƌĞƋƵĞŶĐLJƐƚĂŶĚĂƌĚ! ,ŽƐƚĐƌLJƐƚĂůŵƵƐƚďĞͬŚĂǀĞ͗ - ůĂƌŐĞďĂŶĚŐĂƉїƚƌĂŶƐƉĂƌĞŶƚ - no impurities / color centers - symmetric - diamagnetic WŽƐƐŝďůĞĐĂŶĚŝĚĂƚĞƐ͗Ă&2͕>ŝ&͕ĞƚĐ͙ Crystal doped with 1 nucleus per O3: 1014 ions per cm3 - simple fluorescence detection is possible - initial broadband excitation experiment with synchrotron light Doped solid-ƐƚĂƚĞĐƌLJƐƚĂůƐǁŝƚŚdŚn+ Optical Mössbauer Spectroscopy >ĂƐĞƌĞdžĐŝƚĂƚŝŽŶŽĨdŚ-ions in a solid Th4+ їĐŽŵƉĂĐƚŽƉƚŝĐĂůĨƌĞƋƵĞŶĐLJƐƚĂŶĚĂƌĚ! First experiments at ALS in Berkeley: - ^LJŶĐŚƌŽƚƌŽŶƉƌŽǀŝĚĞƐƚƵŶĂďůĞůŝŐŚƚ;ϱ-ϯϬĞsͿŽĨůŝŶĞǁŝĚƚŚϬ͘ϭϳϱĞs - >ŝ&ĐƌLJƐƚĂůĚŽƉĞĚǁŝƚŚ232dŚ ¥ - Measured fluorescence background from D-decay ¥ їŶĂƌƌŽǁĚŽǁŶƌĞƐŽŶĂŶĐĞ 0.1 nm! Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010) &ŝĞůĚƐŚŝĨƚƐŝŶƐŝĚĞĐƌLJƐƚĂů ŽŵŝŶĂŶƚĐƌLJƐƚĂůĨŝĞůĚƐŚŝĨƚ͗ůĞĐƚƌŝĐƋƵĂĚƌƵƉŽůĞƐŚŝĨƚ 21 2 Ğ͘Ő͘ĨŝĞůĚŐƌĂĚŝĞŶƚŝŶdŚ4 (tetragonal): Vzz = 5×10 V/m ĺdŚ-ϮϮϵŶƵĐůĞĂƌŐƌŽƵŶĚƐƚĂƚĞƋƵĂĚƌƵƉŽůĞƐŚŝĨƚуϭ',nj! їuse cubic crystal symmetry dĞŵƉĞƌĂƚƵƌĞĚĞƉĞŶĚĞŶĐĞŽĨůŝŶĞǁŝĚƚŚĂŶĚĨƌĞƋƵĞŶĐLJƐŚŝĨƚƐ͗ ͻ ƌĞůĂƚŝǀŝƐƚŝĐŽƉƉůĞƌƐŚŝĨƚ͗ϭϬ-15 ͬ< ͻ electric crystal field shifts may be » 10-15 ͬ< (e.g. contact interaction nucleus / e- cloud) ĺ)RUKLJKSUHFLVLRQEH\RQG-15 work at cryogenic temperature to freeze out lattice fluctuations Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010) WĞŝŬĞƚĂů͕͘WƌŽĐ͘ϳƚŚ^LJŵƉ͘ŽŶ&ƌĞƋƵĞŶĐLJ^ƚĂŶĚĂƌĚƐĂŶĚDĞƚƌŽůŽŐLJ;Ăƌyŝǀ͗ϬϴϭϮ͘ϯϰϱϴͿ Search for nuclear resonance in 229dŚ+ - Electron Bridge Processes ^ĞĂƌĐŚĨŽƌŶƵĐůĞĂƌĞdžĐŝƚĂƚŝŽŶǀŝĂĞůĞĐƚƌŽŶďƌŝĚŐĞƉƌŽĐĞƐƐ ͻ Ed;EƵĐůĞĂƌdžĐŝƚĂƚŝŽŶďLJůĞĐƚƌŽŶdƌĂŶƐŝƚŝŽŶͿ͗dƌĂŶƐĨĞƌŽĨĞdžĐŝƚĂƚŝŽŶ from the electron shell to the nucleus ͻ Excitation of the shell in a 2-photon process їŶŽƚƵŶĂďůĞůĂƐĞƌĂƚϭϲϬŶŵƌĞƋƵŝƌĞĚ ͻ Excitation rate may be strongly enhanced at ƌĞƐŽŶĂŶĐĞďĞƚǁĞĞŶĞůĞĐƚƌŽŶŝĐĂŶĚŶƵĐůĞĂƌ ƚƌĂŶƐŝƚŝŽŶĨƌĞƋƵĞŶĐLJ ĺǀĞƌLJůŝŬĞůLJŝŶƚŚĞĚĞŶƐĞůĞǀĞůƐƚƌƵĐƚƵƌĞŽĨdŚ+ ͻ ĞƚĞĐƚŝŽŶŽĨƚŚĞŶƵĐůĞĂƌĞdžĐŝƚĂƚŝŽŶǀŝĂĨůƵŽƌĞƐĐĞŶĐĞŽƌĐŚĂŶŐĞŝŶ hyperfine structure dǁŽ-photon electron bridge excitation rate &ĞLJŶŵĂŶĚŝĂŐƌĂŵ Zatomicresonance line at 402 nm Ztunable laser to search for nuclear resonance electrons Z Z Z E1 N Dϭ,&^ nucleus Excitation rate as a function of nuclear resonance frequency (elect. levels from ab-initio calculations) їĞdžĐŝƚĂƚŝŽŶƌĂƚĞŽĨĂƚůĞĂƐƚ 10 s-1 ǁŝƚŚĐŽŶǀĞŶƚŝŽŶĂů laser parameters WŽƌƐĞǀĞƚĂů͕͘WŚLJƐ͘ZĞǀ͘>Ğƚƚ͘105, 182501 (2010) Laser spectroscopy of trapped Th+ ions at PTB - Linear Paul trap for buffer gas cooled clouds of Th+ (N >105) - Laser ablation loading (N2-Laser, now Nd:YAG laser) - Fluorescence detection in several spectral channels Laser spectroscopy of trapped Th+ ions Decay channels for the 402 nm resonance line - Laser excitation in Th+ leads to population of many metastable levels - These are quenched by collisions or emptied with repumper lasers Th+ Level Scheme ͻ >ĞǀĞůƐŝŶƚŚĞsearch range only ±1V ŝŶĐŽŵƉůĞƚĞůLJŬŶŽǁŶ ͻ džƉŽŶĞŶƚŝĂůŝŶĐƌĞĂƐĞŽĨůĞǀĞů density expected 3 x 800 nm 402 nm ͻ Why is nuclear laser spectroscopy difficult? ͻdŚĞůŽǁ-ĞŶĞƌŐLJŝƐŽŵĞƌŝĐƐƚĂƚĞŝŶdŚ-229 ͻdŚ-229 as a precise optical nuclear clock • Application search for D Are fundamental constants really constant? Equivalence Principle: fundamental constants need to be constant in time = = Reinhold et al., PRL 96, 151101 (2006) Murphy et al., Mon. Not. R. Astron. Soc. 345, 609 (2003) Laboratory Tests Sensitivity factor A of different x f wln

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us