
symmetry symmetry LAVAL LAVAL ININI ININI ININI ININI b d p q Dyslexia… β δ π θ • Symmetry: • From greak (sun) ‘’with" (metron) "measure" • Same etymology as "commensurate" • Until mid-XIX: only mirror symmetry Definitions • Transformation, Group • Évariste Galois 1811, 1832. Symmetry: Property of invariance of an objet under a space transformation Transformation • Bijection which maps a geometric set in itself M f(M)=M’ • Affine transformation defined by P, P’ and O such that: f(M) = P’ + O(PM) & x'# &a# &txx t yx tzx #& x# P’ $ ! $ ! $ !$ ! P P $ y'! = $b! + $txy t yy tzy !$ y! f : positions $ z'! $ c ! $t t t !$ z ! % " % " % xz yz zz "% " O : vectors Affine transformation preserves lines, planes, parallelism • Translation: O identity P’ P P • Homothety: O(PM)=k.PM P P • (also): Homothety in one direction P P • Isometry: preserves distances P P • Simililarity: preserves ratios P P Translation • Infinite periodic lattices Homothety • Self-similar objects • Infinite fractals Similitude Infinite fractal Logarithmic spiral (r=aebθ) θ -> θ+θ’ r -> re-bθ’ -bθ’ e θ’ Isometries f(M) = P’ + O(PM) • Isometry ||O(u)||=||u|| distance-preserving map • Two types of isometry: • Affine isometry: f(M) • Transforms points. • Microscopic properties of crystals (electronic structure) • Translation • Helix of pitch P • Rotations • Reflections (α, Pα /2π) • Linear isometry O(PM) • Transforms vectors (directions) • Macroscopic properties of crystals (response functions) 60° • Rotations E ? • Reflections Linear isometry- 2D ||O(u)|| = ||u|| • In the plane (2D) • Rotations • Reflections (reflections by an axis) θ θ/2 &cosθ − sinθ # &cos θ sinθ # $ ! $ ! % sinθ cosθ " % sinθ − cosθ " • Determinant +1 • Determinant -1 • Eigenvalues eiθ, e-iθ • Eigenvalues -1, 1 Linear isometry - 3D • ||O(u)|| = |λ| ||u|| Eigenvalues |λ | = 1 • In space (3D) : • λ : 3rd degree equation (real coefficients) ±1, eiθ, e-iθ (det. = ± 1) • det. = 1 • det. = -1 • Direct symmetry • Indirect symmetry Rotations Rotoreflections a) Rotation by angle θ θ θ b) Roto-reflection θ Improper rotation c) Inversion (π) θ d) Roto-inversion (π+θ ) c) Reflection (0) Stereographic projection • To represent directions preserves angles on the sphere NN Direction OM M P’ O P P’ M’ P P, projection of OM : Intersection of SM and equator S • Conform transformation (preserves angles locally) but not affine Main symmetry operations • Conventionally • Direct • Rotations (A ) n • n-fold rotation An (2π/n) • Reflections (M) • Represented by a polygon of same symmetry. • Inversion (C)_ • Rotoinversion (An) . A2 vertical A2 horizontal A3 A4 A5 • Indirect ~ • Rotoreflections (An) • Symmetry element • Reflection (M) • Locus of invariant points • Inversion (C) _ • Rotoinversions (An) . M vertical M horizontal M Inversion A4 Difficulties… • Some symmetry are not intuitive • Reflection (mirrors) • Rotoinversion ‘’The ambidextrous universe’’ Why do mirrors reverse left and right but not top and bottom Composition of symmetries • Two reflections with angle α = rotation 2α M M’M=A 2α M’ α • Euler construction A AN3 N2 AN1 π/N2 π/N1 Composition of two rotations = rotation AN2AN1=AN3 • No relation between N1, N2 et N3 Point group: definition • The set of symmetries of an object forms a group G • A and B ⊂ G, AB ⊂ G (closure) • Associativity (AB)C=A(BC) 1 2 • Identity element E (1-fold rotation) • Invertibility A, A-1 ≠ • No commutativity in general (rotation 3D) 2 1 • Example: point groupe of a rectangular table (2mm) Mx * E Mx My A2 E E Mx My A2 My Mx Mx E A2 My My My A2 E Mx A2 A2 A2 My Mx E • Multiplicity: number of elements 2mm Composition of rotations Constraints AN2 AN1 AN3 π/N2 π/N1 234 Spherical triangle, angles verifies: π π π 1 1 1 + + > π + + >1 N1 N2 N3 N1 N2 N3 22N (N>2), 233, 234, 235 Dihedral groups Multiaxial groups Points groups ... groups Monoclinic Triclinic Cubic Orthorhombic Trigonal Hexagonal Tetragonal Curie’s An • Sorted by 1 2 3 4 6 ∞ Symmetry degree An A2 • Curie‘s limit groups 222 32 422 622 ∞ 2 _ An • Chiral, propers _ _ _ _ _ 1 2=m 3 4 6=3/m • Impropers ∞ An /M /m • Centrosymmetric 2/m 4/m 6/m An M 2mm 3m 4mm 6mm ∞ m _ An M _ _ _ _ _ 3m 42m (4m2) 62m (6m2) ∞/mm An /MM’ mmm 4/ mmm 6/ mmm An A n’ 23 432 ∞ ∞ _ An A n’ _ _ _ m3 43m m3m ∞ /m∞ /m 23 432 532 _ _ _ __ m3 43m m3m 53m Tétraèdre Octaèdre Icosaèdre Cube Dodécaèdre Multiaxial groups Points group: Notations • Hermann-Mauguin (International notation - 1935) • Generators (not minimum) • Symmetry directions • Reflection ( - ): defined by the normal to the plane Primary Direction: higher-order symmetry Secondary directions : lower-order 4 2 2 Notation 4 m m m m m réduite m Tertiary directions : lowest-order • Schönflies : Cn, Dn, Dnh Les 7 groupes limites de Pierre Curie Rotating cone axial + polar vectors ∞ Twisted cylindre Axial tensor order 2 ∞ 2 Rotating cylinder axial vector (H) ∞ /m Cone Polar vector (E, F) ∞ m Cylindrer Polar tensor ordre 2 (susceptibility) ∞ /mm Chiral sphere Axial scalar (chiralité) ∞ ∞ Sphere Polar scalar (pression, masse) ∞ /m∞ /m Definitions Symmetric : Invariant under at least two transformations Asymmetric: Invariant under one transformation. Dissymmetric: Lost of symmetry… .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages30 Page
-
File Size-