Symmetry Symmetry LAVAL LAVAL ININI ININI ININI ININI B D P Q

Symmetry Symmetry LAVAL LAVAL ININI ININI ININI ININI B D P Q

symmetry symmetry LAVAL LAVAL ININI ININI ININI ININI b d p q Dyslexia… β δ π θ • Symmetry: • From greak (sun) ‘’with" (metron) "measure" • Same etymology as "commensurate" • Until mid-XIX: only mirror symmetry Definitions • Transformation, Group • Évariste Galois 1811, 1832. Symmetry: Property of invariance of an objet under a space transformation Transformation • Bijection which maps a geometric set in itself M f(M)=M’ • Affine transformation defined by P, P’ and O such that: f(M) = P’ + O(PM) & x'# &a# &txx t yx tzx #& x# P’ $ ! $ ! $ !$ ! P P $ y'! = $b! + $txy t yy tzy !$ y! f : positions $ z'! $ c ! $t t t !$ z ! % " % " % xz yz zz "% " O : vectors Affine transformation preserves lines, planes, parallelism • Translation: O identity P’ P P • Homothety: O(PM)=k.PM P P • (also): Homothety in one direction P P • Isometry: preserves distances P P • Simililarity: preserves ratios P P Translation • Infinite periodic lattices Homothety • Self-similar objects • Infinite fractals Similitude Infinite fractal Logarithmic spiral (r=aebθ) θ -> θ+θ’ r -> re-bθ’ -bθ’ e θ’ Isometries f(M) = P’ + O(PM) • Isometry ||O(u)||=||u|| distance-preserving map • Two types of isometry: • Affine isometry: f(M) • Transforms points. • Microscopic properties of crystals (electronic structure) • Translation • Helix of pitch P • Rotations • Reflections (α, Pα /2π) • Linear isometry O(PM) • Transforms vectors (directions) • Macroscopic properties of crystals (response functions) 60° • Rotations E ? • Reflections Linear isometry- 2D ||O(u)|| = ||u|| • In the plane (2D) • Rotations • Reflections (reflections by an axis) θ θ/2 &cosθ − sinθ # &cos θ sinθ # $ ! $ ! % sinθ cosθ " % sinθ − cosθ " • Determinant +1 • Determinant -1 • Eigenvalues eiθ, e-iθ • Eigenvalues -1, 1 Linear isometry - 3D • ||O(u)|| = |λ| ||u|| Eigenvalues |λ | = 1 • In space (3D) : • λ : 3rd degree equation (real coefficients) ±1, eiθ, e-iθ (det. = ± 1) • det. = 1 • det. = -1 • Direct symmetry • Indirect symmetry Rotations Rotoreflections a) Rotation by angle θ θ θ b) Roto-reflection θ Improper rotation c) Inversion (π) θ d) Roto-inversion (π+θ ) c) Reflection (0) Stereographic projection • To represent directions preserves angles on the sphere NN Direction OM M P’ O P P’ M’ P P, projection of OM : Intersection of SM and equator S • Conform transformation (preserves angles locally) but not affine Main symmetry operations • Conventionally • Direct • Rotations (A ) n • n-fold rotation An (2π/n) • Reflections (M) • Represented by a polygon of same symmetry. • Inversion (C)_ • Rotoinversion (An) . A2 vertical A2 horizontal A3 A4 A5 • Indirect ~ • Rotoreflections (An) • Symmetry element • Reflection (M) • Locus of invariant points • Inversion (C) _ • Rotoinversions (An) . M vertical M horizontal M Inversion A4 Difficulties… • Some symmetry are not intuitive • Reflection (mirrors) • Rotoinversion ‘’The ambidextrous universe’’ Why do mirrors reverse left and right but not top and bottom Composition of symmetries • Two reflections with angle α = rotation 2α M M’M=A 2α M’ α • Euler construction A AN3 N2 AN1 π/N2 π/N1 Composition of two rotations = rotation AN2AN1=AN3 • No relation between N1, N2 et N3 Point group: definition • The set of symmetries of an object forms a group G • A and B ⊂ G, AB ⊂ G (closure) • Associativity (AB)C=A(BC) 1 2 • Identity element E (1-fold rotation) • Invertibility A, A-1 ≠ • No commutativity in general (rotation 3D) 2 1 • Example: point groupe of a rectangular table (2mm) Mx * E Mx My A2 E E Mx My A2 My Mx Mx E A2 My My My A2 E Mx A2 A2 A2 My Mx E • Multiplicity: number of elements 2mm Composition of rotations Constraints AN2 AN1 AN3 π/N2 π/N1 234 Spherical triangle, angles verifies: π π π 1 1 1 + + > π + + >1 N1 N2 N3 N1 N2 N3 22N (N>2), 233, 234, 235 Dihedral groups Multiaxial groups Points groups ... groups Monoclinic Triclinic Cubic Orthorhombic Trigonal Hexagonal Tetragonal Curie’s An • Sorted by 1 2 3 4 6 ∞ Symmetry degree An A2 • Curie‘s limit groups 222 32 422 622 ∞ 2 _ An • Chiral, propers _ _ _ _ _ 1 2=m 3 4 6=3/m • Impropers ∞ An /M /m • Centrosymmetric 2/m 4/m 6/m An M 2mm 3m 4mm 6mm ∞ m _ An M _ _ _ _ _ 3m 42m (4m2) 62m (6m2) ∞/mm An /MM’ mmm 4/ mmm 6/ mmm An A n’ 23 432 ∞ ∞ _ An A n’ _ _ _ m3 43m m3m ∞ /m∞ /m 23 432 532 _ _ _ __ m3 43m m3m 53m Tétraèdre Octaèdre Icosaèdre Cube Dodécaèdre Multiaxial groups Points group: Notations • Hermann-Mauguin (International notation - 1935) • Generators (not minimum) • Symmetry directions • Reflection ( - ): defined by the normal to the plane Primary Direction: higher-order symmetry Secondary directions : lower-order 4 2 2 Notation 4 m m m m m réduite m Tertiary directions : lowest-order • Schönflies : Cn, Dn, Dnh Les 7 groupes limites de Pierre Curie Rotating cone axial + polar vectors ∞ Twisted cylindre Axial tensor order 2 ∞ 2 Rotating cylinder axial vector (H) ∞ /m Cone Polar vector (E, F) ∞ m Cylindrer Polar tensor ordre 2 (susceptibility) ∞ /mm Chiral sphere Axial scalar (chiralité) ∞ ∞ Sphere Polar scalar (pression, masse) ∞ /m∞ /m Definitions Symmetric : Invariant under at least two transformations Asymmetric: Invariant under one transformation. Dissymmetric: Lost of symmetry… .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us