Deformation Theory

Deformation Theory

Alexios Terezakis Deformation Theory Master's Thesis University of Athens, Department of Mathe- matics Athens March 14, 2019 Advisor: Aristides Kontogeorgis Master Thesis Committee Ioannis Emmanouil Aristides Kontogeorgis Ioannis Dokas To my parents Contents Eiσαγωγή ix Introduction xiii 1 Basic Definitions 1 1.1 Coefficient-Λ-algebras 1 1.2 Zariski Tangent Space 3 1.3 K¨ahlerDifferentials 5 2 Schlessinger's Representability Theorem 9 2.1 Small Extensions 9 2.2 Functors of Artin rings 11 2.3 Universal Elements 12 2.4 Schlessinger's Theorem 14 3 Examples 23 3.1 The Picard functor 23 3.2 Deformations of curves 26 A Flat Modules 29 Literature 31 Eiσαγωγή 'Enac moduli functor F από mia kathgorÐa C! Sets eÐnai ènac συναρτητής από mia kathgorÐa (schemes, sheaves, morfism¸n metαξύ touc, anaparasτάσεων) sthn kathgorÐa twn συνόlwn, ¸ste o F na stèlnei oikogèneiec antikeimènwn thc C πάνω από mia βάση B se èna stoiqeÐo thc κλάσης isodunamÐac twn antikeimènwn πάνω από to B. 'Ena moduli πρόβλημα lègetai fine όtan o moduli συναρτητής eÐnai representable, δηλαδή όtan υπάρχει èna scheme X kai ènac isomorfiσμός ∼ sunartht¸n hX = F . 'Opou o hX eÐnai o συναρτητής pou stèlnei to antikeÐmeno T sto σύνοlo Hom(T;X), twn morfism¸n T ! X thc kathgorÐac C kai thn απεικόnish f : T1 ! T2 sthn απεικόnish hx(T2) 3 h2 7! h1 = h2 ◦ f 2 hX (T1) mèsw tou διαγράμματoc h1 T1 / X > f h 2 T2 H ύπαρξη ενός tètoiou isomorfiσμού, shmaÐnei όti gia οποιαδήποte antikeÐmena Ti;Tj kai συναρτήσειc fij : Ti ! Tj, υπάρχει mÐa συμβατή oikogèneia isomorfi- sm¸n φi tètoia ¸ste to ακόloujo διάγραμμa na metatÐjetai φj hX (Tj) / F (Tj) hX (fi;j ) F (fi;j ) φi hX (Ti) / F (Ti) 'Ena από ta κλασσικά moduli προβλήματa eÐnai to moduli πρόβλημα twn kampul¸n dedomènou gènouc g. Αυτός o moduli συναρτητής apeikonÐzei κάθε oikogèneia sqetik¸n kampul¸n X ! T πάνω από èna scheme T , sthn κλάση isomorfÐac touc, όπου δύο oikogèneiec X1; X2 eÐnai iσόμορφες όtan υπάρχει ènac isomorfiσμός φ tètoioc ¸ste to παρακάτw διάγραμμα na metatÐjetai φ X1 / X2 ~ T x · Contents Γεωμετρικά, oi καμπύλες πάνω από to Speck, όπου to k eÐnai αλγεβρικά kleistό s¸ma, antistoiχούν sta shmeÐa tou X, αφού h απεικόnish X ! Speck antistoiqeÐ se stoiqeÐo tou συνόlou hX (Speck) = Speck; X), δηλαδή se èna γεωμετρικό shmeÐo tou X. Dustuq¸c, h ύπαρξη automorfism¸n kampul¸n, empodÐzei ton moduli sunarthth από to na eÐnai representable. Gia παράδειgma an C eÐnai mia αλγεβρική καμπύλη me κάποιon mh tetrimmèno automorfiσμό φ, τόte èqoume to ακόloujo διάγραμμα φ C / C id Speck / Speck H σπουδαιόthta tou παραπάνω paradeÐgmatoc ègkeitai sto όti h apeikόnish id : Speck ! Speck den periγράφει thn apεικόnish twn oikogenei¸n. Wc èna ακόμα παράδειgma ja deÐxoume όti o moduli συναρτητής twn elleiptik¸n kampul¸n den eÐnai representable. Mia ελλειπτική καμπύλη πάνω από to C eÐnai mia leÐa probo- λική καμπύλη E, mazÐ me èna stajeropoihmèno shmeÐo e 2 E. Qrhsimopoi¸ntac to Je¸rhma Riemann-Roch se συνδυασμό me thn jewrÐa διαμόρφωσης twn τεσσά- rwn shmeÐwn διακλάδωσης thc διπλής επικάλυψης E ! P1, μπορούμε na deÐxoume όti κάθε ελλειπτική καμπύλη mporeÐ na perigrafeÐ από ta shmeÐa mhdeniσμού tou omoγενούς poλυωνύμου Y 2Z − X(X − Z)(X − λZ); Se αυτό to montèlo to kleisτό shmeÐo e èqei probolikèc suntetagmènec e = [0 : 1 : 0], kai λ 2 A1 − f0; 1g. To polu¸numo αυτό orÐzei mia oikogèneia 1 E! A − f0; 1g; πάνω από thn truphmènh afiνική eujeÐa, sunep¸c to A1−f0; 1g mporeÐ na jewrhjeÐ wc q¸roc paramètrwn gia thn oikogèneia. H αναπαράσtash mia κλάσης isomorfÐac wc Ðna den eÐnai moναδική, υπάρχει mia δράση thc συμμετρικής ομάδας S3 sto A1 −f0; 1g h opoÐa παράγετai από touc automorfiσμούς λ 7! 1/λ, λ 7! 1=(1−λ). An jèloume na παραμετρήσουμε elleiptikèc καμπύλες qwrÐc na κάποια proboλική εμφύτευση prèpei na θεωρήσουμε to phlÐko A1 − f0; 1g proc thn δράση αυτή thc S3. O q¸roc pou ja katαλήξουμε eÐnai o δακτύλιoc twn analloÐwtwn tou C[λ]λ(λ−1) pou eÐnai h j-eujeÐa, me (λ2 − λ + 1)3 j = 28 : λ2(λ − 1)2 Υπάρχει mia antistoiqÐa metαξύ twn κλάσεων isomorfiσμού elleiptik¸n kampul¸n πάνω από to C kai twn migadik¸n arijm¸n j 2 C. Wsτόσο h afiνική eujeÐa A1 den apoteleÐ èna fine moduli q¸ro gia tic elleiptikèc καμπύλεc. Πράγματι, èstw 1 mia oikogèneia elleiptik¸n kampul¸n Et orismènh πάνω από to A − f0g, h opoÐa dÐnetai από thn exÐswsh Y 2Z = X3 − tZ3: Gia κάθε t όlec oi Ðnec èqoun stαθερή j-analloÐwth Ðsh me to 0. 'Estw όti to A1 anaparisτά tic elleiptikèc καμπύλες, τόte h paραπάνω oikogèneia ja prèpei 1 1 na antistoiqeÐ ston stαθερό morfiσμό (A − f0g) ! Aj . 'Omwc h ελλειπτική Contents · xi 2 3 3 καμπύλη E0 : Y Z = X − Z èqei epÐshc j-analloÐwth 0. Sunep¸c h oikogèneia 1 Et ja eÐnai tetrimmènh kai Ðsh me E0 × (A − f0g). Wsτόσο αυτό den eÐnai alhjèc, 1 πάνω από to function field C(t) oi oikogèneiec Et kai (A −f0g) gÐnontai iσόmorfec πάνω από thn epèktash C(t1=6). Υπάρχουν διάφορες teqnikèc pou mac epitrèpoun na katasτήσουμε èna moduli πρόβλημα representable, όπως gia παράδειgma h eiσαγωγή thc ènnoiac twn alge- brik¸n q¸rwn kai twn stacks, ή αλλάζοntac thn ènnoia thc isomorfÐac. An mac epitrèpetai mia υπεραπλούσteush, μπορούμε na pούμε pwc ènac τρόπος na ori- stούν ta stacks ενός moduli q¸rou kampul¸n eÐnai na orÐsoume thn kathgorÐa me antikeÐmena tic proper smooth oikogèneiec X! S, twn opoÐwn oi Ðnec eÐnai sunektikèc καμπύλες dedomènou gènouc. H jewrÐa paramorf¸sewn (Deformation theory) από thn άλλη proèrqetai a- πό thn douleÐa twn Kodaira kai Spencer πάνω se migadikèc poλλαπλόthtec. O Grothendieck metèfere thn jewrÐa αυτή sthn gl¸ssa twn Schemes. Μπορούμε na πούμε όti h jewrÐa paramorf¸sewn eÐnai h diaqeÐrish ενός moduli προβλή- matoc tοπικά, όπου meletούντai oikogèneiec πάνω από to φάσμα topik¸n Artin daktulÐwn. 'Enac daκτύλιoc tou Artin eÐnai ex oriσμού ènac δακτύλιoc ston o- poÐo κάθε fjÐnousa akoloujÐa idewd¸n tou termatÐzei ύσtera από peperasmèna βήματa. 'Ena από ta pio απλά paradeÐgmata (pou den eÐnai s¸ma) eÐnai o δακτύλιoc k[]=h2i, όπου to apoteleÐ èna apeirostό βαθμού 2 me thn ènnoia όti 2 = 0. Sth dhmosÐeush tou o Schlessinger mac parèqei thn gl¸ssa kai ta ergaleÐa na qeiristούμε ta apeirosτά san stoiqeÐa tou ‘εφαπτόμενου χώρου’ kai λύνει thn antÐstoiqh συνήθη διαφορική exÐswsh mèsw tupik¸n dunamoseir¸n daktulÐwn. Sugkekrimèna sto Κεφάλαιo 1 eiσάγουμε tic kathgorÐec pou ja χρησιμοποιή- soume, ton Zariski εφαπτόμενο q¸ro kai pwc na ton orÐsoume gia sunarthtèc kai ta διαφορικά K¨ahler. Sto Κεφάλαιo 2 orÐzoume thn ènnoia thc small extension (μικρής επεκτάσης), thn ènnoia smoothness kai tèloc to κεντρικό apotèlesma, to Je¸rhma tou Schlessinger. Sto teleutaÐo κεφάλαιo αποδεικνύουμε me thn χρή- sh tou Θεωρήματoc tou Schlessinger όti o Picard συναρτητής kai o συναρτητής παραμόρφωσης eÐnai pro-representable. Αθήνα Μάρτιoc 2019. Introduction A moduli functor F from a category C! Sets is a functor from a category (schemes, sheaves,morphisms between them, representations) to the category of sets, so that F it sends families of objects of C over a base B to the element of equivalence class of objects over B. A moduli problem is called fine when the moduli functor is representable, that is there is a scheme X and an isomor- ∼ phism of functors hX = F . The functor hX is the functor sending T to the set Hom(T;X), of morphisms of schemes T ! X, and the map f : T1 ! T2 to the map hX (T2) 3 h2 7! h1 = h2 ◦ f 2 hx(T1) by the diagram h1 T1 / X > f h 2 T2 ∼ The existence of an isomorphism hX = F , means that for every objects Ti;Tj and functions fi;j : Ti ! Tj, there is a compatible set of isomorphisms φi so that the following diagram is commutative φj hX (Tj) / F (Tj) hX (fi;j ) F (fi;j ) φi hX (Ti) / F (Ti) One of the classical moduli problems is the moduli problem of curves of genus g. This moduli functor to any family of relative curves X! T over a scheme T assigns the isomorphy class of it, where two families X1; X2 are isomorphic when there is an isomorphism φ making the following diagram commutative: φ X1 / X2 ~ T Geometrically curves over Speck, where k is an algebraically closed field k, correspond to points of X, since the structure map X ! Speck corresponds to an element in the set hX (Speck) = Hom(Speck; X) i.e. a geometric point of X. xiv · Contents Unfortunately, the existence of automorphisms of curves, prevents the mod- uli functor to be representable. For example if C is an algebraic curve which admits a non-trivial automorphism φ, then we have the diagram φ C / C id Speck / Speck The importance of the above example is that the map id : Speck ! Speck does not describe the map of the families. As an other example we will show that the moduli space of elliptic curves is not representable. An elliptic curve over C is a smooth projective curve E, together with a selected closed point e 2 E. As an application of Riemann-Roch theorem we can show that any elliptic curve can be described as the zero locus of the homogeneous polynomial Y 2Z − X(X − Z)(X − λZ); using also the theory of configuration of the four ramification points of the two cover E ! P1. In this model the closed point e has projective coordinates e = [0 : 1 : 0], and λ 2 A1 − f0; 1g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    47 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us