Lecture 11: Eigenvalues and Eigenvectors De…Nition 11.1

Lecture 11: Eigenvalues and Eigenvectors De…Nition 11.1

Lecture 11: Eigenvalues and Eigenvectors De…nition 11.1. Let A be a square matrix (or linear transformation). A number ¸ is called an eigenvalue of A if there exists a non-zero vector ~u such that A~u = ¸~u . (1) In the above de…nition, the vector ~u is called an eigenvector associated with this eigenvalue ¸. The set of all eigenvectors associated with ¸forms a subspace, and is called the eigenspace associated with ¸. Geometrically, if we view any n n matrix A as a linear transformation T. Then the fact that ~u is an eigenvector associat£ed with an eigenvalue ¸ means ~u is an invariant direction under T. In other words, the linear transformation T does not change the direction of ~u : ~u and T~u either have the same direction (¸ > 0) or opposite direction (¸< 0). The eigenvalue is the factor of contraction ( ¸ < 1) or extension ( ¸ > 1). Remarks. (1) ~u = ~0 is crucial, since ~u = ~0 aljwjays satis…es Equ (1)j. j(2) If ~u is an eigenvector for ¸, then 6so is c~u for any constant c. (3) Geometrically, in 3D, eigenvectors of A are directions that are unchanged under linear transformation A. We observe from Equ (1) that ¸ is an eigenvalue i¤ Equ (1) has a non-trivial solution. Since Equ (1) can be written as (A ¸I) ~u = A~u ¸~u = ~0, (2) ¡ ¡ it follows ¸ is an eigenvalue i¤ Equ (2) has a non-trivial solution. By the inverse matrix theorem, Equ (2) has a non-trivial solution i¤ det (A ¸I) = 0. (3) ¡ We conclude that ¸ is an eigenvalue i¤ Equ (3) holds. We call Equ (3) "Characteristic Equation" of A. The eigenspace, the subspace of all eigenvectors associated with ¸, is eigenspace = Null (A ¸I) . ¡ Finding eigenvalues and all independent eigenvectors: ² Step 1. Solve Characteristic Equ (3) for ¸. Step 2. For each ¸, …nd a basis for the eigenspace Null (A ¸I) (i.e., solution set of Equ (2)). ¡ Example 11.1. Find all eigenvalues and their eigenspace for 3 2 A = . 1 ¡0 · ¸ Solution: 3 2 1 0 A ¸I = ¡ ¸ ¡ 1 0 ¡ 0 1 · ¸ · ¸ 3 2 ¸ 0 3 ¸ 2 = ¡ = ¡ ¡ . 1 0 ¡ 0 ¸ 1 ¸ · ¸ · ¸ · ¡ ¸ 1 The characteristic equation is det (A ¸I) = (3 ¸) ( ¸) ( 2) = 0, ¡ ¡ ¡ ¡ ¡ ¸2 3¸+ 2 = 0, ¡ (¸ 1) (¸ 2) = 0. ¡ ¡ We …nd eigenvalues ¸1 = 1, ¸2 = 2. We next …nd eigenvectors associated with each eigenvalue. For ¸1 = 1, 3 1 2 x1 2 2 x1 ~0 = (A ¸1I) ~x = ¡ ¡ = ¡ , ¡ 1 1 x2 1 1 x2 · ¡ ¸ · ¸ · ¡ ¸ · ¸ or x1 = x2. The parametric vector form of solution set for (A ¸1I) ~x = ~0 : ¡ x1 x2 1 ~x = = = x2 . x2 x2 1 · ¸ · ¸ · ¸ 1 basis of Null (A I) : . ¡ 1 · ¸ This is only (linearly independent) eigenvector for ¸1 = 1. The last step can be done slightly di¤erently as follows. From solutions (for (A ¸1I) ~x = ~0 ) ¡ x1 = x2, we know there is only one free variable x2. Therefore, there is only one vector in any basis. To …nd it, we take x2 to be any nonzero number, for instance, x2 = 1, and compute x1 = x2 = 1. We obtain x 1 ¸ = 1, ~u = 1 = . 1 1 x 1 · 2¸ · ¸ For ¸2 = 2, we …nd 3 2 2 x1 1 2 x1 ~0 = (A ¸2I) ~x = ¡ ¡ = ¡ , ¡ 1 2 x2 1 2 x2 · ¡ ¸ · ¸ · ¡ ¸ · ¸ or x1 = 2x2. To …nd a basis, we take x2 = 1. Then x1 = 2, and a pair of eigenvalue and eigenvector 2 ¸ = 2, ~u = . 2 2 1 · ¸ 2 Example 11.2. Given that 2 is an eigenvalue for 4 1 6 A = 2 ¡1 6 . 22 1 83 ¡ 4 5 Find a basis of its eigenspace. Solution: 4 2 1 6 2 1 6 2 1 6 A 2I = ¡2 1¡ 2 6 = 2 ¡1 6 0 ¡0 0 . ¡ 2 2 ¡1 8 23 22 ¡1 63 ! 20 0 03 ¡ ¡ ¡ 4 5 4 5 4 5 Therefore, (A 2I) ~x = ~0 becomes ¡ 2x1 x2 + 6x3 = 0, or x2 = 2x1 + 6x3, (4) ¡ where we select x1 and x3 as free variables only to avoid fractions. Solution set in parametric form is x1 x1 1 0 ~x = x2 = 2x1 + 6x3 = x 2 + x 6 . 2 3 2 3 1 2 3 3 2 3 x3 x3 0 1 A basis for the eigenspace: 4 5 4 5 4 5 4 5 1 0 ~u1 = 2 and ~u2 = 6 . 203 213 Another way of …nding a basis for N4 u5ll (A ¸I) =4 N5ull (A 2I) may be a little easier. ¡ ¡ From Equ (4), we know that x1 an x3 are free variables. Choosing (x1, x3) = (1, 0) and (0, 1) , respectively, we …nd 1 x1 = 1, x3 = 0 = x2 = 2 = ~u1 = 2 ) ) 203 4 5 0 x1 = 0, x3 = 1 = x2 = 6 = ~u2 = 6 . ) ) 213 Example 11.3. Find eigenvalues: (a) 4 5 3 1 6 3 ¸ 1 6 A = 0 ¡0 6 , A ¸I = ¡0 ¡¸ 6 . 20 0 23 ¡ 2 0 ¡0 2 ¸3 ¡ 4 5 4 5 det (A ¸I) = (3 ¸) ( ¸) (2 ¸) = 0 ¡ ¡ ¡ ¡ 3 The eigenvalues are 3, 0, 2, exactly the diagonal elements. (b) 4 0 0 4 ¸ 0 0 B = 2 1 0 , B ¸I = ¡2 1 ¸ 0 21 0 43 ¡ 2 1 ¡0 4 ¸3 ¡ 4 5 4 5 det (B ¸I) = (4 ¸)2 (1 ¸) = 0. ¡ ¡ ¡ The eigenvalues are 4, 1, 4 (4 is a double root), exactly the diagonal elements. Theorem 11.1. (1) The eigenvalues of a triangle matrix are its diagonal elements. (2) Eigenvectors for di¤erent eigenvalues are linearly independent. More precisely, sup- pose that ¸1, ¸2, ..., ¸p are p di¤erent eigenvalues of a matrix A. Then, the set consisting of a basis of Null (A ¸1I) , a basis of Null (A ¸2I) , ..., a basis of Null (A ¸pI) ¡ ¡ ¡ is linearly independent. Proof. (2) For simplicity, we assume p = 2 : ¸ = ¸ are two di¤erent eigenvalues. Suppose 1 6 2 that ~u1 is an eigenvector of ¸1 and ~u2 is an eigenvector of ¸2 To show independence, we need to show that the only solution to x1~u1 + x2~u2 = ~0 is x1 = x2 = 0. Indeed, if x1 = 0, then 6 x2 ~u1 = ~u2. (5) x1 We now apply A to the above equation. It leads to x2 x2 A~u1 = A~u2 = ¸1~u1 = ¸2~u2. (6) x1 ) x1 Equ (5) and Equ (6) are contradictory to each other: by Equ (5), x2 Equ (5) = ¸1~u1 = ¸1~u2 ) x1 x2 Equ (6) = ¸1~u1 = ¸2~u2, ) x1 or x2 x2 ¸1~u2 = ¸1~u1 = ¸2~u2. x1 x1 Therefor ¸1 = ¸2, a contradiction to the assumption that they are di¤erent eigenvalues. Characteristic Polynomials ² 4 We know that the key to …nd eigenvalues and eigenvectors is to solve the Characteristic Equation (3) det (A ¸I) = 0. ¡ For 2 2 matrix, £ a ¸ b A ¸I = ¡ . ¡ c d ¸ · ¡ ¸ So det (A ¸I) = (a ¸) (d ¸) bc ¡ ¡ ¡ ¡ = ¸2 + ( a d) ¸+ (ad bc) ¡ ¡ ¡ is a quadratic function (i.e., a polynomial of degree 2). In general, for any n n matrix A, £ a ¸ a a 11 ¡ 12 ¢ ¢ ¢ 1n a21 a22 ¸ a2n A ¸I = 2 ¡ ¢ ¢ ¢ 3 . ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6 an1 an2 ann ¸7 6 ¢ ¢ ¢ ¡ 7 We may expand the determinant 4along the …rst row to get 5 a22 ¸ a2n det (A ¸I) = (a ¸) det ¡ ¢ ¢ ¢ + ... ¡ 11 ¡ 2 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 3 an2 ann ¸ ¢ ¢ ¢ ¡ By induction, we see that det (A ¸I) is a po4lynomial of degree n.We5called this polynomial the characteristic polynomial¡of A. Consequently, there are total of n (the number of rows in the matrix A) eigenvalues (real or complex, after taking account for multiplicity). Finding roots for higher order polynomials may be very challenging. Example 11.4. Find all eigenvalues for 5 2 6 1 0 ¡3 8 ¡0 A = . 20 0 ¡5 4 3 60 0 1 1 7 6 7 Solution: 4 5 5 ¸ 2 6 1 ¡0 3¡ ¸ 8 ¡0 A ¸I = 2 ¡ ¡ 3 , ¡ 0 0 5 ¸ 4 ¡ 6 0 0 1 1 ¸7 6 ¡ 7 4 5 3 ¸ 8 0 det (A ¸I) = (5 ¸) det ¡0 5¡ ¸ 4 ¡ ¡ 2 0 ¡1 1 ¸3 ¡ 4 5 ¸ 4 5 = (5 ¸) (3 ¸) det ¡ ¡ ¡ 1 1 ¸ · ¡ ¸ = (5 ¸) (3 ¸) [(5 ¸) (1 ¸) 4] = 0. ¡ ¡ ¡ ¡ ¡ 5 There are 4 roots: (5 ¸) = 0 = ¸= 5 ¡ ) (3 ¸) = 0 = ¸= 3 ¡ ) (5 ¸) (1 ¸) 4 = 0 = ¸2 6¸+ 1 = 0 ¡ ¡ ¡ ) ¡ 6 p36 4 = ¸= § ¡ = 3 2p2. ) 2 § We know that we can computer determinants using elementary row operations. One may ask: Can we use elementary row operations to …nd eigenvalues? More speci…cally, we have Question: Suppose that B is obtained from A by elementary row operations. Do A and B has the same eigenvalues? (Ans: No) Example 11.5. 1 1 R2+R1 R2 1 1 A = ! = B 0 2 ! 1 3 · ¸ · ¸ A has eigenvalues 1 and 2. For B, the characteristic equation is 1 ¸ 1 det (B ¸I) = ¡ ¡ 1 3 ¸ · ¡ ¸ = (1 ¸) (3 ¸) 1 = ¸2 4¸+ 2. ¡ ¡ ¡ ¡ The eigenvalues are 4 p16 8 4 p8 ¸= § ¡ = § = 2 p2. 2 2 § This example show that row operation may completely change eigenvalues. De…nition 11.2. Two n n matrices A and B are called similar, and is denoted as £ 1 A B, if there exists an invertible matrix P such that A = P BP ¡ . »Theorem 11.2. If A and B are similar, then they have exact the same characteristic polynomial and consequently the same eigenvalues. 1 1 1 1 Indeed, if A = P BP ¡ , then P (B ¸I) P ¡ = P BP ¡ ¸P IP ¡ = (A ¸I) . There- fore, ¡ ¡ ¡ 1 1 det (A ¸I) = det P (B ¸I) P ¡ = det (P ) det (B ¸I) det P ¡ = det (B ¸I) . ¡ ¡ ¡ ¡ Example 11.6. F¡ind eigenvalues o¢f A if ¡ ¢ 5 2 6 1 0 ¡3 8 ¡0 A B = 2 ¡ 3 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us