IAEA-TECDOC-1349 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity Final report of a co-ordinated research project 1995–2001 April 2003 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria POTENTIAL OF THORIUM BASED FUEL CYCLES TO CONSTRAIN PLUTONIUM AND REDUCE LONG LIVED WASTE TOXICITY IAEA, VIENNA, 2003 IAEA-TECDOC-1349 ISBN 92–0–103203–X ISSN 1011–4289 © IAEA, 2003 Printed by the IAEA in Austria April 2003 FOREWORD An important function of the International Atomic Energy Agency is to "foster the exchange of scientific and technical information" and to "encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world". For innovative advanced nuclear reactor concepts, IAEA Member States in many cases find it attractive to co-operate internationally in technology development. The IAEA's fast reactor and hybrid systems technology development activities, which are conducted within its nuclear power programme, encourage international co-operation through technical information exchange and collaborative research. As regards the latter, co-ordinated research projects (CRPs) are tools that are effectively used in the implementation of the IAEA’s activities, both to promote exchange of scientific and technical information, and to pursue collaborative research and development tasks. Apart from allowing the efforts to be shared on an international basis and benefitting from the joint experience and expertise of researchers from the participating institutes, CRPs foster international team building. From 1995 to 2001, the IAEA initiated a CRP on Potential of Thorium Based Fuel Cycles to Constrain Plutonium and to Reduce Long Term Waste Toxicity. The Member States involved in the CRP were: China, Germany, India, Israel, Japan, Republic of Korea, Netherlands, Russian Federation and the United States of America. The research programme was divided into three stages: (1) benchmark calculations, (2) optimization of the incineration of plutonium in various reactor types, and (3) assessment of the resulting impact on the waste radio toxicity. The results of all three stages were presented at international conferences, specifically, ICENES 98, ICENES 2000, and PHYSOR 2002 respectively. The present report was prepared with the assistance of H.J. Rütten, Research Center Jülich (FZJ, Germany). The IAEA officer responsible for this publication was A. Stanculescu of the Division of Nuclear Power. EDITORIAL NOTE In preparing this publication for press, staff of the IAEA have made up the pages from the original manuscript(s). The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. Throughout the text names of Member States are retained as they were when the text was compiled. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. CONTENTS 1. INTRODUCTION.................................................................................................................. 1 2. EXECUTIVE SUMMARY AND CONCLUSIONS ............................................................. 2 2.1. Comparison of methods and basic nuclear data......................................................... 2 2.1.1. Cell burnup calculations .................................................................................. 2 2.1.2. Lattice calculations for LWR........................................................................... 9 2.2. Evaluation of the potential of LWRs, HTRs, HWRs and MSRs for plutonium incineration............................................................................................. 14 2.2.1. Incentives....................................................................................................... 14 2.2.2. Results............................................................................................................ 15 2.2.3. Conclusions.................................................................................................... 16 2.3. Effect of plutonium incineration on the toxicity of disposed nuclear waste ........... 18 2.3.1. Incentives and database ................................................................................. 18 2.3.2. Toxicity benchmark....................................................................................... 18 2.3.3. Possible reduction of the radio-waste toxicity............................................... 22 2.3.4. Results and conclusions................................................................................. 23 2.4. Conclusions.............................................................................................................. 26 References to Section 2............................................................................................................ 27 3. INDIVIDUAL CONTRIBUTIONS OF THE VARIOUS COUNTRIES............................ 28 3.1. China........................................................................................................................ 28 3.1.1. Study of thorium fuel cycles burning weapons grad and civil grade plutonium in the Module-HTR .................................................................... 28 3.1.2. Physics studies of energy production and plutonium burning in pebble-bed type high temperature gas cooled module reactor ................ 32 References to Section 3.1................................................................................................ 35 3.2. Germany................................................................................................................... 36 3.2.1. Introduction.................................................................................................... 36 3.2.2. Optimization of plutonium incineration in the modular HTR....................... 36 3.2.3. Effect of plutonium incineration on the long lived waste toxicity ................ 45 3.2.4. Summary and conclusions ............................................................................. 48 References to Section 3.2................................................................................................ 49 3.3. India ......................................................................................................................... 50 3.3.1. Introduction.................................................................................................... 50 3.3.2. Benchmarks ................................................................................................... 50 3.3.3. Evaluation of the potential of HWRs for plutonium incineration ................. 51 3.3.4. Assessment of the effect of plutonium incineration on waste toxicity.......... 52 3.3.5. Details of reactor calculations for plutonium burner (PHWR)...................... 61 3.4. Israel and the USA................................................................................................... 66 3.4.1. Introduction.................................................................................................... 66 3.4.2. Toxicity calculations...................................................................................... 73 References to Section 3.4................................................................................................ 78 3.5. Japan ........................................................................................................................ 79 3.5.1. Introduction.................................................................................................... 79 3.5.2. Reactor model................................................................................................ 79 3.5.3. Calculation of fuel depletion ......................................................................... 80 3.5.4. Calculation of toxicity ................................................................................... 81 3.5.5. Conclusion ..................................................................................................... 82 References to Section 3.5................................................................................................ 91 3.6. Republic of Korea.................................................................................................... 92 3.6.1. Potential of a thorium based fuel cycle for 900 MW(e) PWR core to incinerate plutonium................................................................................... 92 3.6.2. Assessment of the effect of plutonium incineration on the long lived waste toxicity................................................................................................ 101 References to Section 3.6.............................................................................................. 105 3.7. Russian Federation................................................................................................. 106 3.7.1. Calculations on the principal neutronics characteristics of the WWER-1000 reactor loaded with PuO2–ThO2 fuel based on weapons grade plutonium............................................................................. 106 3.7.2. Calculations of the
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages139 Page
-
File Size-