Matrix Representation of the Q-Jacobsthal Numbers

Matrix Representation of the Q-Jacobsthal Numbers

Proyecciones Journal of Mathematics Vol. 31, No 4, pp. 345-354, December 2012. Universidad Cat´olica del Norte Antofagasta - Chile Matrix representation of the q-Jacobsthal numbers Gamaliel Cerda-Morales P. Universidad Cat´olicadeValpara´so, Chile Received : September 2012. Accepted : October 2012 Abstract In this paper, we consider a q-Jacobsthal sequence Jq,n ,with { } initial conditions Jq,0 =0and Jq,1 =1.Thengiveagenerating matrix for the terms of sequence Jq,kn for a positive integer k.With the aid of this matrix, we derive{ some} new identities for the sequence Jq,kn . { } Subjclass : 11B39, 11B37, 15A36. Keywords : q-Jacobsthal numbers, q-Jacobsthal-Lucas numbers, ma- trix methods. 346 Gamaliel Cerda-Morales 1. Introduction In [H1], Horadam introduce a sequence Wn(a, b; p, q) ,orbriefly Wn , defined by the recurrence relation { } { } (1.1) Wn = pWn 1 qWn 2,n 2, − − − ≥ with W0 = a, W1 = b,wherea, b, p and q are integers with p>0, q =0. 6 We are interested in the following two special cases of Wn ,theq- { } Jacohsthal sequence Jq,n defined by { } (1.2) Jq,n = Jq,n 1 qJq,n 2,Jq,0 =0,Jq,1 =1,n 2, − − − ≥ and the q-Jacobsthal-Lucas sequence jq,n defined by { } (1.3) jq,n = jq,n 1 qjq,n 2,jq,0 =2,jq,1 =1,n 2. − − − ≥ The above recurrences involve the characteristic equation (1.4) x2 x + q =0 − 1+√1 4q 1+√1 4q with roots αq = 2 − and βq = 2 − . Explicit closed form expres- sions for Jq,n and jq,n are (n 1) ≥ n n αq βq (1.5) Jq,n = − , αq βq − and n n (1.6) jq,n = αq + βq . Particular cases of the previous definition are: If q = 1, the classic Fibonacci sequence appears by F0 =0,F1 =1 • − and Fn+1 = Fn + Fn 1 for n 1: Fn n N = 0, 1, 1, 2, 3, 5, 8,... − ≥ { } ∈ { } If q = 2, the Jacobsthal sequence introduced in [H2], and defined • − by Jn+1 = Jn +2Jn 1 for n 1, J0 =0,J1 =1: Jn n N = 0, 1, 1, 3, 5, 11,... − ≥ { } ∈ { } We define Jq be the 2 2matrix × 1 q (1.7) Jq = − , " 10# Matrix representation of the q-Jacobsthal numbers 347 then for an integer n with n 1, Jn has the form ≥ q n Jq,n+1 qJq,n (1.8) Jq = − . " Jq,n qJq,n 1 # − − The particular case q = 2, was introduced by Koken¨ and Bozkurt in [KB2, KB3]. Moreover, they− have obtained the Cassini formula for the Jacobsthal numbers. In this paper, we study new relations on q-Jacobsthal sequence, using the matrix Jq defined in (1.7). Initially, the q-Jacobsthal numbers are defined for n 0 but their exis- tence for n<0 is readily extended, yielding ≥ n n Jq, n = q− Jq,n and jq, n = q− jq,n. − − − For n 2andafixed positive integer k, in [KS] the authors study the ≥ sequence Wq,kn(x) and prove the following relation: { } k (1.9) Jq,kn = jq,kJq,k(n 1) q Jq,k(n 2), − − − k (1.10) jq,kn = jq,kjq,k(n 1) q jq,k(n 2), − − − where the initial conditions of the sequences Jq,n and jq,n are 0 and { } { } Jq,k , and 2 and jq,k , respectively. { } { } 2 k If αq,k and βq,k are the roots of equation λ jq,kλ + q = 0, then the − Binet formulas of the sequences Jq,kn and jq,kn are given by { } { } αn βn J = J q,k− q,k and j = αn + βn , q,kn q,k αq,k βq,k q,kn q,k q,k µ − ¶ respectively. It is clear that αq,1 = αq and βq,1 = βq. From the Binet formulas, one can see that Jq,2kn = jq,knJq,kn. 2. Companion matrix for the sequence Jq,kn { } In this section, we define a 2 2matrixAq andthenwegivesomenew × results for the q-Jacobsthal numbers Jq,kn by matrix methods. Define the 2 2matrixAq as follows: × k jq,k q (2.1) Aq = − . " 10# By an inductive argument and using (1.9), we get Proposition 2.1. For any integer n 1 holds: ≥ k n 1 Jq,k(n+1) q Jq,kn (2.2) Aq = k− . Jq,k " Jq,kn q Jq,k(n 1) # − − 348 Gamaliel Cerda-Morales Proof. (By induction). For n =1: k k 1 jq,k q 1 Jq,2k q Jq,k (2.3) Aq = − = − k 10J Jq,k q Jq,0 " # q,k " − # since Jq,0 =0andJq,2k = jq,kJq,k. Let us suppose that the formula is true for n 1: − k n 1 1 Jq,kn q Jq,k(n 1) (2.4) Aq − = − k − . Jq,k " Jq,k(n 1) q Jq,k(n 2) # − − − k k n n 1 1 1 Jq,kn q Jq,k(n 1) jq,k q Then, Aq = Aq − Aq = J − k − − q,k " Jq,k(n 1) q Jq,k(n 2) #" 10# − − − k k 1 jq,kJq,kn q Jq,k(n 1) q Jq,kn = J − k − k− q,k " jq,kJq,k(n 1) q Jq,k(n 2) q Jq,k(n 1) # − − − − − k 1 Jq,k(n+1) q Jq,kn = J k− 2 q,k " Jq,kn q Jq,k(n 1) # − − Clearly the matrix An satisfies the recurrence relation, for n 1 q ≥ n+1 n k n 1 (2.5) A = jq,kA q A − , q q − q 0 1 where A = I2, A = Aq and I2 is the 2 2 unit matrix. q q × In this study, we define the q-Jacobsthal-Lucas jq-matrix by 2 k k jq,k 2q jq,kq (2.6) jq = − − k . jq,k 2q " − # It is easy to see that jq,k(n+1) Jq,kn Jq,k(n+1) jq,kn = jq and ∆ = jq " jq,kn # " Jq,k(n 1) # " Jq,kn # " jq,k(n 1) # − − where Jq,kn, jq,kn are as above, and ∆ =1 4q. We obtain Cassini’s formula and properties− of these numbers by a sim- ilar matrix method to the Lucas numbers [KB1]. Proposition 2.2. Let jq be a matrix as in (2.6). Then, for all integers n 1, the following matrix power is held below ≥ k n Jq,k(n+1) q Jq,kn ∆ 2 k− if n even n ⎧ " Jq,kn q Jq,k(n 1) # (2.7) jq = ⎪ − k − ⎪ n 1 jq,k(n+1) q jq,kn ⎪ −2 ⎨ ∆ k− if n odd, " jq,kn q jq,k(n 1) # ⎪ − − ⎪ where Jq,kn and⎩⎪jq,kn are the kn-th q-Jacobsthal and q-Jacobsthal-Lucas numbers, respectively. Matrix representation of the q-Jacobsthal numbers 349 Proof. We use mathematical induction on n. First, we consider odd n. For n =1, k 1 jq,2k q jq,k jq = − k , jq,k q jq,0 " − # 2 k since jq,2k = jq,k 2q and jq,0 = 2. So, (2.7) is indeed true for n =1.Now wesupposeitistruefor− n = t,thatis t 1 k t − jq,k(t+1) q jq,kt jq = ∆ 2 k− . " jq,kt q jq,k(t 1) # − − 2 Using the induction hypothesis and jq by a direct computation. we can write k t+2 t 2 t+1 jq,k(t+3) q jq,k(t+2) j = j j = ∆ 2 , q q q j −qkj " q,k(t+2) − q,k(t+1) # as desired. Secondly, let us consider even n. For n =2wecanwrite k 2 Jq,3k q Jq,2k jq = ∆ − k . Jq,2k q Jq,k " − # So, (2.7) is true for n = 2. Now, we suppose it is true for n = t,using properties of the q-Jacobsthal numbers and the induction hypothesis, we can write k t+2 t+2 Jq,k(t+3) q Jq,k(t+2) j = ∆ 2 , q J −qkJ " q,k(t+2) − q,k(t+1) # as desired. Hence, (2.7) holds for all n. 2 n+1 2 n k n 1 If we use the equation (2.5), we can write jq,kA = j A q jq,kA q q,k q − q − = j2 An qk(An + qkAn 2) q,k q − q q − =(j2 qk)An q2kAn 2. q,k − q − q − Comparing the entries in the first row and first column for the above matrix equation, we get 2 k 2k (jq,k q )Jq,k(n+1) q Jq,k(n 1) (2.8) jq,k = − − − . Jq,k(n+2) n n For n 0, if we consider the fact that det(Aq ) = (det(Aq)) ,thenwe obtain the≥ generalized Cassini identity 2 k(n 1) 2 (2.9) Jq,k(n+1)Jq,k(n 1) Jq,kn = q − Jq,k. − − − 350 Gamaliel Cerda-Morales 2 n 1 For example, for k =1,wegetJq,n+1Jq,n 1 Jq,n = q − , the gener- alized Cassini identity with q-Jacobsthal numbers.− − In this− case, if q = 1, we get Cassini identity on classic Fibonacci sequence. − Now we shall derive some results for Jq,kn by matrix methods. { } Proposition 2.3. For all n, m Z ∈ k (2.10) Jq,kJq,k(n+m) = Jq,kmJq,k(n+1) q Jq,k(m 1)Jq,kn. − − n+m n m Proof. Since Aq = Aq Aq and after some simplifications, we obtain k k n+m 1 Jq,k(n+1) q Jq,kn Jq,k(m+1) q Jq,km Aq = J2 k− k− q,k " Jq,kn q Jq,k(n 1) #" Jq,km q Jq,k(m 1) # − − − − Jq,km n+1 k Jq,k(m 1) n = Aq q − Aq .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us