Riemann-Liouville Fractional Calculus of Coalescence Hidden-Variable Fractal Interpolation Functions

Riemann-Liouville Fractional Calculus of Coalescence Hidden-Variable Fractal Interpolation Functions

Riemann-Liouville Fractional Calculus of Coalescence Hidden-variable Fractal Interpolation Functions Srijanani Anurag Prasad Department of Applied Sciences, The NorthCap University, Gurgaon 6th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals June 13-17, 2017 S.A.Prasad (NCU) FC June13-17,2017 1/31 Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June13-17,2017 2/31 Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June13-17,2017 3/31 Fractal Interpolation Function (FIF) Fractal Interpolation Function (FIF) : [Barnsley M.F., 1986] Similarities of FIF and traditional methods ∗ Geometrical Character - can be plotted on graph ∗ Represented by formulas Difference between FIF and traditional methods ∗ Fractal Character S.A.Prasad (NCU) FC June13-17,2017 4/31 Coalescence Hidden-variable Interpolation Functions For simulating curves that exhibit self-affine and non-self-affine nature simultaneously, Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) was introduced by [Chand A.K.B. and Kapoor G.P., 2007]. 120 180 160 100 140 80 120 100 60 80 40 60 40 20 20 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 S.A.Prasad (NCU) FC June13-17,2017 5/31 Construction of a CHFIF 2 Given data{(xk, yk) ∈ R : k = 0, 1,..., N} 3 Generalized data {(xk, yk, zk) ∈ R : k = 0, 1,..., N} [x0, xN ]= I, [xk−1, xk]= Ik, k = 1, 2,..., N Lk : I → Ik Lk(x0)= akx + bk xk − xk−1 = (x − x0)+ xk−1 (1) xN − x0 S.A.Prasad (NCU) FC June13-17,2017 6/31 Construction of a CHFIF 2 2 Fk : I × R → R Fk(x, y, z)= αky + βkz + pk(x), γkz + qk(x) (2) |αk| < 1 , |γk| < 1 , |βk| + |γk| < 1 Fk(x0, y0, z0) = (yk−1, zk−1) Fk(xN , yN , ZN ) = (yk, zk) 2 2 ωk : I × R → I × R ωk(x, y, z) = (Lk(x), Fk(x, y, z)), k = 1, 2,... N S.A.Prasad (NCU) FC June13-17,2017 7/31 Construction of a CHFIF Theorem ( [Chand A.K.B. and Kapoor G.P., 2007]) 2 (1) {I × R ; ωk, k = 1, 2,..., N} is a hyperbolic IFS with respect to a metric equivalent to Euclidean metric on R3. R3 N (2) The attractor G ⊆ such that G = k=1 ωk(G) of the above IFS is 2 graph of a continuous function f : I → R such that f (xk) = (yk, zk) for k = 0, 1,..., N i.e. G = {(x, f (x)) : x ∈ I and f (x) = (y(x), z(x))}. S.A.Prasad (NCU) FC June13-17,2017 8/31 Construction of CHFIF Definition The Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) for the given interpolation data {(xk, yk) : k = 0, 1,..., N } is defined as the continuous function f1 : I → R, where f1 is the first component of the continuous function f = (f1, f2), graph of which is attractor of the hyperbolic IFS. f2 - AFIF (Self-Affine Fractal Interpolation Function) yk = zk and αk + βk = γk for all k, f1 = f2 is FIF S.A.Prasad (NCU) FC June13-17,2017 9/31 Construction of CHFIF CHFIF : if xk−1 ≤ x ≤ xk then −1 −1 −1 f1(x)= αk f1(Lk (x)) + βk f2(Lk (x)) + pk(Lk (x)) FIF : if xk−1 ≤ x ≤ xk then −1 −1 f2(x)= γk f2(Lk (x)) + qk(Lk (x)) S.A.Prasad (NCU) FC June13-17,2017 10/31 Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June13-17,2017 11/31 Riemann-Liouville fractional integral Definition Let −∞ < a < x < b < ∞. The Riemann-Liouville fractional integral of order ν > 0 with lower limit a is defined for locally integrable functions f : [a, b] → R as x 1 Iν f (x)= (x − t)ν−1f (t)dt (3) a+ Γ(ν) a for x > a. S.A.Prasad (NCU) FC June13-17,2017 12/31 Riemann-Liouville fractional integral 2 Given data{(xk, yk) ∈ R : k = 0, 1,..., N} 3 Generalized data {(xk, yk, zk) ∈ R : k = 0, 1,..., N} xk−1 1 pν (x)= aν Iν p (x)+ (L (x) − t)ν−1 f (t) dt (4) k k x0+ k Γ(ν) k 1 x0 and xk−1 1 qν (x)= aν Iν q (x)+ (L (x) − t)ν−1 f (t)dt. (5) k k x0+ k Γ(ν) k 2 x0 S.A.Prasad (NCU) FC June13-17,2017 13/31 Riemann-Liouville fractional integral ν ν ν Fk (x, y, z)= Fk,1(x, y, z), Fk,2(x, z) ν ν ν ν ν = ak αky + ak βkz + pk (x), ak γkz + qk (x) (6) Define ν ν ωk (x, y, z) = (Lk(x), Fk (x, y, z)) ; (7) ν ν y0 = 0 = z0 , ν ν qN (xN ) zN = ν , 1 − aN γN ν ν ν aN βN ν pN (xN ) yN = ν zN + ν , 1 − aN αN 1 − aN αN ν ν ν ν ν zk = ak γkzN + qk (xN )= qk+1(x0) ν ν ν ν ν ν ν and yk = ak αkyN + ak βkzN + pk (xN )= pk+1(x0), k = 1, 2,..., N − 1. (8) S.A.Prasad (NCU) FC June13-17,2017 14/31 Riemann-Liouville fractional integral of FIF Proposition Let f2 be a FIF passing through the interpolation data given by 2 {(xk, zk) ∈ R : k = 0, 1,..., N}. Then, Riemann-Liouville fractional integral of a FIF of order ν is also a FIF passing through the data ν R2 ν {(xk, zk ) ∈ : k = 0, 1,..., N}, where zk are given by (8). S.A.Prasad (NCU) FC June13-17,2017 15/31 Riemann-Liouville fractional integral of FIF Theorem ( [S.A.P, 2017]) Let f1 be the CHFIF passing through the interpolation data given by 2 {(xk, yk) ∈ R : k = 0, 1,..., N} and f2 be the corresponding FIF passing 2 through the data {(xk, zk) ∈ R : k = 0, 1,..., N}. Then, Riemann-Liouville fractional integral of a CHFIF of order ν given by (3) is also a CHFIF passing through the data ν R2 ν {(xk, yk ) ∈ : k = 0, 1,..., N}, where yk are given by (8). S.A.Prasad (NCU) FC June13-17,2017 16/31 Riemann-Liouville fractional integral of CHFIF Sketch of Proof: Let x such that xk−1 < x < xk for some k ∈ {1, 2,..., N}. Then, x 1 Iν f (x)= (x − t)ν−1 f (t)dt x0+ 1 Γ(ν) 1 x0 xk−1 x 1 = (x − t)ν−1 f (t) dt + (x − t)ν−1 f (t) dt Γ(ν) 1 1 x0 xk−1 S.A.Prasad (NCU) FC June13-17,2017 17/31 Riemann-Liouville fractional integral of CHFIF xk−1 1 Iν f (x)= (x − t)ν−1 f (t) dt x0+ 1 Γ(ν) 1 x0 − L 1(x) k ν −1 ν−1 + ak (Lk (x) − t) f1(Lk(t)) dt x0 = aν α Iν f (L−1(x)) + aν β Iν f (L−1(x)) k k x0+ 1 k k k x0+ 2 k xk−1 1 + aν Iν p (L−1(x)) + (x − t)ν−1 f (t) dt k x0+ k k Γ(ν) 1 x0 S.A.Prasad (NCU) FC June13-17,2017 18/31 Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June13-17,2017 19/31 Riemann-Liouville fractional derivative Definition n−ν 1,1 Let −∞ < a < x < b < ∞, 0 <ν, f ∈ L1([a, b]) and I f ∈ W , where n is the smallest integer greater than ν . The Riemann-Liouville fractional derivative of order ν with lower limit a is defined as dn (Dν f )(x)= (In−ν f )(x) a+ dxn a+ ν and (Da+ f )(x)= f (x) when ν = 0. S.A.Prasad (NCU) FC June13-17,2017 20/31 Riemann-Liouville fractional derivative of FIF xk−1 −n n dν −ν ν ak d n−ν−1 q (x)= a D qk(x)+ f2(t)(Lk(x) − t) dt (9) k k Γ(n − ν) dxn x0 and xk−1 −n n dν −ν ν ak d n−ν−1 p (x)= a D pk(x)+ f1(t)(Lk(x) − t) dt . k k Γ(n − ν) dxn x0 (10) S.A.Prasad (NCU) FC June13-17,2017 21/31 Riemann-Liouville fractional derivative of FIF Proposition Let f2 be a FIF passing through the interpolation data R2 ν {(xk, zk) ∈ : k = 0, 1,..., N} and |γk| < ak for some fixed ν > 0. Then Riemann-Liouville fractional derivative of a FIF of order ν is also a FIF provided (9) is satisfied. S.A.Prasad (NCU) FC June13-17,2017 22/31 Riemann-Liouville fractional derivative of CHFIF Theorem ( [S.A.P, 2017]) Let f1 be the CHFIF passing through the interpolation data given by 2 {(xk, yk) ∈ R : k = 0, 1,..., N} and f2 be the corresponding FIF passing 2 through the data {(xk, zk) ∈ R : k = 0, 1,..., N}. For a fixed ν > 0, if ν the free variables and constrained variables are such that |αk| < ak , ν ν |γk| < ak and |βk| + |γk| < ak then Riemann-Liouville fractional derivative of a CHFIF of order ν is also a CHFIF provided (9) and (10) are satisfied. S.A.Prasad (NCU) FC June13-17,2017 23/31 Riemann-Liouville fractional derivative of FIF Suppose f2 is a FIF passing through interpolation data given by {(xk, zk) : k = 0, 1, 2,..., N} constructed with the free variables γk for k = 1, 2,..., N.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us