Hspace ∗1< Fill Luniversality of S EPAROIDS <Quad 87

Hspace ∗1< Fill Luniversality of S EPAROIDS <Quad 87

UNIVERSALITY OF S EPAROIDS .. 87 n hspaceClearly∗fn S openf i l l parenthesisgUNIVERSALITY M closing OF parenthesis S EPAROIDS = opennquad parenthesis87 E comma dagger closing parenthesis is a separoid period .. Furthermore comma the separoid is acyclic if and nnoindentonly if theClearly oriented matroid $S is acyclic ( M period ) The = class ( of allE oriented , n matroidsdagger is denoted) $ is a separoid . nquad Furthermore , the separoid is acyclic if and onlyby M if period the oriented matroid is acyclic . The class of all oriented matroids is denoted by $ M . $ 5 period All acyclic separoids of order 3 come from one of the eight familiesUNIVERSALITY of convex OF S EPAROIDS 87 bodies depictedClearly inS(M Figure) = 1(E; periody) is Those a separoid labelled . a Furthermore comma b comma , the e separoid and h are is point acyclic separoids if and only period if the 5 . All acyclic separoids of order 3 come from one of the eight families of convex Figure 1oriented period .. matroid The acyclic is acyclic s eparoids . The of class order of all3 period oriented matroids is denoted by M: bodies depicted in Figure 1 . Those labelled a , b , e and h are point separoids . Example 1 suggest5 . All the acyclic following separoids definitions of order period 3 come The from dimension one of the d open eight parenthesis families of convex S closing bodies parenthesis depicted of a separoid is the minimumin Figure number 1 . Those d such labelled that everya , b subset, e and withh dare plus point 2 elements separoids is the . support n centerline f Figure 1 . nquad The acyclic s eparoids of order 3 . g of a Radon partition period .. EquivalentlyFigure 1 . commaThe the acyclic dimension s eparoids of a ofseparoid order 3 is . the maximum d such thatExample there exists 1 suggest a subset the sigma following wit to definitions the power .of The = hdimension d plus 1 elementsd (S) such of a that separoid every is subset the min- of Example 1 suggest the following definitions . The dimension d $ ( S ) $ of a separoid i-A t s-iimum sub s-e number s-p e-ad r-psuch to that the power every ofsubset o-a r-i with d-ad t+ e-sigma 2 elements d f-i is sub the t-r support o-h p-m of r-i a Radon sub o-t partition sub s-p e-r . e-r t-l sub a-y t is the minimum number $ d $ such that every subset with $ d + 2 $ elements is the support parenleft-i subEquivalently v-star parenright-e , the dimension c-i o-s ofm-c a l-p-aseparoid to the is the power maximum of l-l subd e-esuch m-d that a-e there n s-t exists sub colon-i a subset σwit= of a Radon partition . nquad Equivalently , the dimension of a separoid is the maximum w .. i ..h e opend + 1 parenthesis elements such i .. u that .. a everye p r e subset e n of i − A t s − i s − pe − ar − po−ar−id−a t e − sigma d $ d $ such that there exists a subset $ nsigma s−e wit ^f = g$ h $ d + 1 $ elements such that every subset of i-s the suppf − i o tof .. aRar − ..i donp ae − ..re r it− onrt − semicolonl parenleft ie comma− i f v-e er ys ubsetwic − io th− ..sm d− parenleft-Scl − p − al closing−le−em−da parenthesis−e plus $ i−A $ tt−ro $−hp s−mi f o−s−ts−ep g s−p ea−−ayt r−p ^f vo−−starparenrighta r−i−e d−a g$ t $ e−sigma $ d $ f−i f t−r 1 .. e e-l mentsn s − t o−h p−m g rcolon−i −if o−t f s−p gg e−r e−r t−l f a−y t g p a r e n l e f t −i f v−star parenright −e g i-n du cw s-e .. i asi e mp ( i oid u perioda e p r e e n c−i o−s m−c l−p−a ^f l−l f e−e m−d a−e gg$ n $ s−t f colon−i g$ Wes ay ti − a tas the .. separ supp o-i o tof di sa aRa .. Radon donp separoid a r it f-i on ev ; erym ie , f vi im− e a er R ys ad ubsetwi o-n p art th sub d t-i parenleft ions − S) + 1 is uni uee .. e − i-nl ments .. it su i − pn or du semicolon-t c s − easi th a-t mp to oid the . power of is comma if A dagger B a n .. d C dagger D .. are m n-i im .. nnoindent w nquad i nquad e ( i nquad u nquad a e p r e e n l-comma th n Wes ay t a ta separ o − i di sa Radon separoid f − i ev erym i im a R ad o − n p artt−i ions A cup Bis = uni C sub ue cup i − Dn = itdouble su p stroke or semicolon right arrow− t th open a − bracetis;if A A By B closinga n brace d C =y D openare brace m n comma− i im to the power of D nnoindent $ i−s $ the supp o tof nquad aRa nquad donp a nquad riton;ie ,f $v−e $ er ys ubsetwi th nquad d closing bracel − periodcomma th n $ pT a .. r e h-e n l e cla f t − toS the )power + of s-s 1 .. $ o ..nquad Ra done .. s-e $ ep− al r $i-o sub ments ds is .. de n-o t d by R period $ i−n $ du c $ s−e $ nquad a s i mp oid . D s p a i S i a .. S .. i to the powerA of t[ s pB a i= to theC[ powerD = of) d f f iABg = f; g: d open parenthesis S plus 2 .. le m sub e-n ts comma th n-e T h − e clas−s o Ra don s − e p a r i − o is de n − o t d by R: n hspaceforall x∗fn negationslash-elementf i l l gWes ay t a A ta cupn Bquad existssepar Row 1 in $ Row o−dsi 2 $ A . di B sub sa :n openquad parenthesisRadon separoid A to the power $ f− ofi backslash $ ev erym y to i im aRad s p a i S i a S it s p a id f i d (S + 2 le m ts , th n − e the$ o− powern $ of p closing $ ar parenthesis t f t−i daggerg$ openi o n s parenthesis sub B backslashe−n y sub cup x closing parenthesis T he .. c-l s .. ofSteini z .. s p-e nnoindent i s uni ue nquad $ i−n $ nquad it2 su pn or) $ semicolon−t $ th $ a−t ^f i s , i f g 8x 62 A [ B9y [ B:(A y y (B n y[ x) A ndagger B $ a n nquad d $ C ndaggerA D $ nquad are m $ n−i $ im nquad $ l−comma $ th n T he c − l s ofSteini z s p − e n [A ncup B = C f ncup g D = nRightarrow nf AB ng = nf , ^f D g ngf . g n ] nnoindent T nquad $ h−e c l a ^f s−s g$ nquad o nquad Ra don nquad $ s−e $ p a r $ i−o f ds g$ i s nquad de $ n−o $ t d by $ R . $ nnoindent s p a i $ S $ i a nquad S nquad $ i ^f t g$ s p a $ i ^f d g$ f i d $ ( S + 2 $ nquad l e $ m f e−n g$ t s , th $ n−e $ n [ n f o r a l l x nnotn in A ncup B n exists yn begin f array gf cg n in nn A nendf array gncup B f :( g A ^f nsetminus g y ^f ) g ndaggerf ( g f B g nsetminus y f ncup g x ) n ] nnoindent T he nquad $ c−l $ s nquad o f S t e i n i z nquad s $ p−e $ 88 .. J period NE S-caron ET caron-R IL AND R period STRAUSZ nnoindentFigure 2 period88 nquad .. SomeJ class . NE es of $ sn eparoidscheckf periodSg $ ET $ ncheckfRg $ IL AND R . STRAUSZ An oriented matroid is a Radon separoid whose minimal Radon partitions sat hyphen n centerlineisfies the weekf Figure elimination 2 . axiomnquad : ifSome A sub class i dagger es B sub of i s comma eparoids for i = . 1g comma 2 comma are minimal Radon par hyphen titions for which there exists an x in B sub 1 cap arrowdblright-comma sub t-universal-one-period-four sub forall e-R-slash- An oriented matroid is a Radon separoid whose minimal Radon partitions sat − notdef-J-T-brackright-three-negationslash88 J . NE Sˇ ET Rˇ IL AND R .n STRAUSZ element-three existential-notdef-t existential-period-e r-element-negationslash sub e- isfies the week elimination axiom : if $ A f i g ndagger B f i g , $ f o r $ i = 1 braceleft-T-notdef-four-negationslash existential-notdefFigure 2 . Some e i s-arrowdblleft class es of s eparoidsts A a m . nim a-l R .. d-a on , 2 , $ are minimal Radon par − rt to the powerAn oriented of i-t i o matroid n C daggeris a D Radon s ch t separoid at C subset whose equal minimal union Radon of A comma partitions D subset sat - isfies equal the union week of B i sub a d .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us