Hohmann Orbit Transfers

Hohmann Orbit Transfers

Hohmann Orbit Transfers By Dylan Morrison-Fogel Walter Hohmann 1925 A spacecraft's apoapsis altitude can be raised by increasing the spacecraft's energy at periapsis. 1 Tangent Burst at Periapsis 1 Tangent Burst at Apoapsis A spacecraft's periapsis altitude can be lowered by decreasing the spacecraft's energy at apoapsis. 1 Tangent Burst at Apoapsis 1 Tangent Burst at Periapsis Theoretical Satellite: Mass: 500 kg Altitude for Geosynchronous Orbit: 19,520 km Velocity at Geosync: 1,432 m/s Initial Orbit 2:08:46:03 B = 2.5e-6 kg/s Thrust 1 = 120s (2min) Transfer Time = 51040s (14.12h) Thrust 2 = 205s (3.12min) Final Orbit Time = 23250s (6.46h) Initial Orbit 2:08:46:03 B = 3e-6 kg/s Thrust 1 = 120s (2min) Impact = 46540s (12.93h) Initial Orbit 4:50:50 Initial Orbit R = 6,570 km B = 2.2e-6 kg/s Thrust 1 = 220s (3.67min) Transfer Time = 25950s (7.21h) Thrust 2 = 290s (4.83min) Final Orbit Time = 101555s (28.21h) Final Orbit R = 11,113 km Initial Orbit 4:50:50 Initial Orbit R = 6,570 km B = 2.186e-6 kg/s Thrust 1 = 220s (3.67min) Transfer Time = 14350s (3.986h) Thrust 2 = 290s (4.83min) Final Orbit Time = 43555s (12.1h) Final Orbit R = 28,074 km For Comparis on Governing Equations ODE113 -> [t,y] = ode113(funct, tspan, y0, options) y = x 1 y’1 = y2 y = x’ 3 3 2 x’’ = -x/r y’2 = -y1 /r r = √(x2 + y2) y = y y’’ = -y/ 3 y’3 = y4 r3 y = y’ 3 4 y’4 = -y3 /r y0 = [xinitial x’initial yinitial y’ ] dy = [ y(2)initial ; -μy(1)/r3 ; y(4) ; -μy(3)/r3 ] 3 3 dth = [ th(2) ; -μth(1)/r ; th(4) ; -th(3)*thr - y(3)/r ] clf; clear all xaxisx = [2*Re 10]; hold on; xaxisy = [0 0]; Re = 6371000; MATLAB Code xaxisz = [0 0]; mu = 39860043623300; yaxisx = [0 0]; tspan1 = [0 in_obtT]; yaxisy = [2*Re 10]; y0 = [19520000 0 0 1432]; yaxisz = [0 0]; tspan2 = [0 thr1T]; function dth = thrust_up_twobody_ode(t,th) tspan3 = [0 fltT]; zaxisx = [0 0]; tspan4 = [0 thr2T]; zaxisy = [0 0]; tspan5 = [0 fn_obtT]; r = sqrt(th(1)^2 + th(3)^2); zaxisz = [2*Re 10]; opts = odeset('Reltol',1e-13,'AbsTol',1e-14,'Stats','on'); mu = 39860043623300; grid on; [t1,y1] = ode113(@twobody_ode, tspan1, y0, opts); c=220*9.81; [x,y,z] = sphere(24); y20= [y1(end,1) y1(end,2) y1(end,3) y1(end,4)]; ms=500; h = surf(x*Re, y*Re, z*Re); [t2,y2] = ode113(@thrust_up_twobody_ode, tspan2, y20, B = 0.0000027; colormap([127/255 1 222/255]); opts); thr=(c*B)/ms; set (h, 'edgecolor', [1 1 1]); y30= [y2(end,1) y2(end,2) y2(end,3) y2(end,4)]; dth = [th(2); -mu*th(1)/r^3 ; th(4); (th(3)*thr - [t3,y3] = ode113(@twobody_ode, tspan3, y30, opts); plot3(xaxisx, xaxisy, xaxisz, '-k', 'LineWidth', 1); mu*th(3)/r^3)]; y40= [y3(end,1) y3(end,2) y3(end,3) y3(end,4)]; plot3(yaxisx, yaxisy, yaxisz, '-k', 'LineWidth', 1); [t4,y4] = ode113(@thrust_up_twobody_ode, tspan4, y40, plot3(zaxisx, zaxisy, zaxisz, '-k', 'LineWidth', 1); opts); plot3(-xaxisx, xaxisy, xaxisz, '-k', 'LineWidth', 1); y50= [y4(end,1) y4(end,2) y4(end,3) y4(end,4)]; plot3(yaxisx, -yaxisy, yaxisz, '-k', 'LineWidth', 1); [t5,y5] = ode113(@twobody_ode, tspan5, y50, opts); plot3(zaxisx, zaxisy, -zaxisz, '-k', 'LineWidth', 1); xlabel('X coordinate (km)', 'FontSize', 12); hold all; ylabel('Y coordinate (km)', 'FontSize', 12); plot(y1(:,1),y1(:,3),'b-') zlabel('Z coordinate (km)', 'FontSize', 12); plot(y2(:,1),y2(:,3),'r*') axis equal; plot(y3(:,1),y3(:,3),'g.') plot(y4(:,1),y4(:,3),'r*') view(50, 40); plot(y5(:,1),y5(:,3),'m-') rotate3d on; title('Satellite Trajectory').

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us