A Novice's Guide from Vector Calculus to Manifolds

A Novice's Guide from Vector Calculus to Manifolds

Chains, forms, and duality: A novice’s guide from vector calculus to manifolds John Kerl February 3, 2008 1 Contents Contents 2 Preface 11 Goalsforthecourse .................................. .......... 11 Goalsforthepaper................................... .......... 12 Structureofthepaper ................................ ........... 12 When I say map,Imean........................................... 13 Specificityofdimension . ............ 13 Theexemplarmodel ................................... ......... 13 Themes ............................................. ...... 15 Acknowledgements ................................... .......... 16 1 Preliminaries from analytic geometry 17 1.1 Notation........................................ ........ 17 1.2 Trigonometric functions . ............. 17 1.3 The dot product and its applications . ............... 19 1.3.1 The dot product and projected length . ............ 19 1.3.2 Projection and perpendicular operators . .............. 20 1.3.3 Point-normalform .............................. ........ 21 1.4 Coordinates..................................... ......... 22 1.4.1 Coordinates, area, and the determinant . .............. 22 1.4.2 Changeofcoordinates . ......... 24 1.4.3 Somecoordinatesystems . ......... 24 1.4.4 Stereographic projection on S1 ............................... 24 1.4.5 Stereographic projection on Sn ............................... 26 1.5 Typesoffunctions ................................ .......... 29 1.5.1 Paths: R to Rm ........................................ 29 1.5.2 Maps: Rm to Rn ....................................... 30 1.5.3 Scalar functions: Rn to R .................................. 31 1.5.4 Levelsets ..................................... ...... 31 2 1.5.5 Images of paths under maps: pushforwards . ............. 32 1.5.6 Images of maps under functions: pullbacks . .............. 32 1.6 A gallery of curves and surfaces, part 1 . ................ 32 2 Preliminaries from vector calculus 34 2.1 Goalsforvectorcalculus. ............. 34 2.2 Differentiation .................................. .......... 35 2.2.1 Derivatives of functions from R to R ............................ 35 2.2.2 Derivativesofpaths ....... ....... ....... ....... ......... 35 2.2.3 Derivatives of functions from Rn to R ........................... 37 2.2.4 Derivatives of maps from Rm to Rn ............................ 39 2.2.5 Derivatives for images of paths under maps . .............. 41 2.2.6 Derivatives for images of maps under functions . ................ 42 2.2.7 The chain rule and the Jacobian . .......... 43 2.2.8 Divergenceandcurl ............................. ........ 43 2.3 Afirstpassattangentspaces . ............ 45 2.4 Integration ..................................... ......... 46 2.4.1 Integralsofpaths.............................. ......... 46 2.4.2 Integrals of scalar functions . ............. 46 2.4.3 Integralsofmaps............................... ........ 47 2.5 Changeofcoordinates ............................. ........... 48 2.5.1 Change of coordinates for derivatives . ............... 48 2.5.2 Change of coordinates for single-variable integrals .................... 48 2.5.3 Change of coordinates for integrals of scalar functions .................. 50 2.6 Integrationtheorems . ............ 52 2.6.1 Pieces for the integration theorems . ............. 52 2.6.2 The fundamental theorem of calculus . ............. 53 2.6.3 The second fundamental theorem of calculus . .............. 54 2.6.4 Green’stheorem ................................ ....... 54 2.6.5 ClassicalStokes............................... ......... 55 2.6.6 Divergencetheorem ............................. ........ 55 3 2.6.7 Fundamental theorem of calculus for line integrals . .................. 55 2.6.8 Cauchy’stheorem ............................... ....... 56 2.7 Lagrangemultipliers . ............ 57 2.8 ODEsinonevariable................................ ......... 59 2.9 ODEsintwovariables ............................... ......... 60 2.10PDEs ............................................. 62 2.11 Limitations of vector calculus . ................ 63 2.11.1 xxx0 ......................................... 63 2.11.2 xxx1 ......................................... 63 2.11.3 xxx2 ......................................... 63 3 Preliminaries from topology and analysis 64 3.1 Connectedness?.................................. .......... 64 3.2 Compactness?.................................... ......... 64 3.3 Homeomorphisms and diffeomorphisms . .............. 64 3.4 Implicitfunctiontheorem . ............. 64 3.5 Inversefunctiontheorem. ............. 66 4 Preliminaries from algebra 67 4.1 Algebraicaxioms ................................. .......... 67 4.1.1 Groups and semigroups . ........ 67 4.1.2 Normalizer and normal closure of a subgroup . .............. 67 4.1.3 Groupactions.................................. ....... 68 4.1.4 Groupactionexample . ........ 68 4.1.5 Rings ......................................... 69 4.1.6 Fields ........................................ ..... 69 4.1.7 Modulesandvectorspaces . ......... 69 4.1.8 Algebras...................................... ...... 70 4.1.9 Gradedalgebras ................................ ....... 71 4.2 Categories...................................... ......... 72 4.2.1 Definitions .................................... ...... 72 4.2.2 Examplesofcategories. ......... 73 4 4.2.3 Functors...................................... ...... 73 4.2.4 Homfunctors................................... ...... 75 4.3 Freeness........................................ ........ 77 4.3.1 Definitions .................................... ...... 77 4.3.2 Freegroups .................................... ...... 78 4.3.3 Freeabeliangroups. ......... 78 4.3.4 Freeproductofgroups. ......... 79 4.3.5 Freemodules ................................... ...... 79 4.4 Quotients, projections, and sections . .................. 81 4.5 Sequences, complexes, and homological algebra . ................... 84 4.5.1 Sequences..................................... ...... 84 4.5.2 Trapezoiddiagrams ............................. ........ 84 4.5.3 Non-complex, non-exact sequences . ............. 85 4.5.4 Exactsequences ................................. ...... 86 4.5.5 Complexes ..................................... ..... 86 4.5.6 [xxxmergew/theabove]Exactsequences. ............ 87 4.5.7 Techniquesforexactsequences . ............ 88 4.5.8 [xxxmergew/above]Complexes . .......... 88 4.5.9 Zigzaglemma................................... ...... 89 4.6 Linearalgebra................................... .......... 90 4.6.1 Notation...................................... ...... 90 4.6.2 Tobefiled ...................................... 90 4.6.3 Basisanddualspace............................. ........ 90 4.6.4 Geometric interpretation of dual . ............. 91 4.6.5 Dualanddoubledual ............................. ....... 92 4.6.6 Explicit computation of dual basis . ............ 92 4.6.7 Change-of-basis matrices; covariance and contravariance................. 93 4.6.8 Pullbacks ...................................... ..... 94 4.6.9 Pairings ...................................... ...... 95 4.6.10 Symmetric and skew-symmetric matrices . .............. 96 4.7 Tensors ......................................... ....... 98 5 4.7.1 Tensor products of vector spaces . ............ 98 4.7.2 Explicit representation of the tensor product; tensor product as vector space . 99 4.7.3 Decomposability of tensors . ........... 101 4.7.4 Tensor products of dual spaces; tensors as k-linear functions . 102 4.7.5 Explicit representation of multilinear functions . ...................103 4.7.6 Mixedtensors.................................. ....... 104 4.7.7 Examplesoftensors .............................. ....... 105 4.7.8 Pullbacks ...................................... 107 4.7.9 Tensoralgebras................................ ........ 108 4.7.10 Permutations acting on multilinear functions . ..................109 4.7.11 Symmetric and alternating tensor spaces . ................110 4.7.12 Symmetric and alternating tensor algebras . .................112 4.7.13 Some explicit computations with tensors . ................115 4.7.14 Change of basis; more about covariance and contravariance ............... 116 4.7.15 Contractions ................................. ........ 119 4.7.16 Tensor products over free modules . ............. 120 5 Topological manifolds 121 5.1 CWcomplexes ..................................... ....... 121 5.2 Classificationofsurfaces . .............. 121 5.3 Homotopy and the fundamental group . ............. 121 5.4 Homologies ...................................... ........ 121 5.5 Singularhomology ................................ .......... 122 5.6 Cellularhomology ................................ .......... 122 5.7 Homotopy equivalence and homotopy invariance . .................122 5.8 Deformationretracts . ............ 122 5.9 Seifert-vanKampen ............................... .......... 122 5.10 Mayer-Vietoris for homology . .............. 123 5.11Coveringspaces................................. ........... 123 5.12TopoTBD........................................ ....... 124 5.13Cubesandchains................................. .......... 125 6 5.14 The boundary operator ∂ ......................................125 5.15Homology ....................................... ........ 125 6 Smooth manifolds 126 6.1 Manifolds ....................................... ........ 126 6.1.1 Manifolds ..................................... 126 6.1.2 Coordinates and parameterizations . .............

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    214 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us