A Beginners' Guide to Resurgence and Trans-Series In

A Beginners' Guide to Resurgence and Trans-Series In

A Beginners’ Guide to Resurgence and Trans-series in Quantum Theories Gerald Dunne University of Connecticut Recent Developments in Semiclassical Probes of Quantum Field Theories UMass Amherst ACFI, March 17-19, 2016 GD & Mithat Ünsal, reviews: 1511.05977, 1601.03414 GD, lectures at CERN 2014 Winter School GD, lectures at Schladming 2015 Winter School Lecture 1 I motivation: physical and mathematical I trans-series and resurgence I divergence of perturbation theory in QM I basics of Borel summation I the Bogomolny/Zinn-Justin cancellation mechanism I towards resurgence in QFT I effective field theory: Euler-Heisenberg effective action Physical Motivation infrared renormalon puzzle in asymptotically free QFT • non-perturbative physics without instantons: physical meaning• of non-BPS saddles "sign problem" in finite density QFT • exponentially improved asymptotics • Bigger Picture non-perturbative definition of non-trivial QFT, in the continuum• analytic continuation of path integrals • dynamical and non-equilibrium physics from path integrals• uncover hidden ‘magic’ in perturbation theory • Physical Motivation what does a Minkowski path integral mean? • i 1 A exp S[A] versus A exp S[A] D D − Z ~ Z ~ − 2 x3=2 ep3 ; x + 1 2 π x1=4 ! 1 1 i 1 t3+x t e ( 3 ) dt 8 2π −∞ ∼ > 2 3=2 π Z > sin( 3 (−x) + 4 ) < p ; x π (−x)1=4 ! −∞ > :> Physical Motivation what does a Minkowski path integral mean? • i 1 A exp S[A] versus A exp S[A] D D − Z ~ Z ~ 1.0 0.5 -10 -5 5 10 -0.5 -1.0 − 2 x3=2 ep3 ; x + 1 2 π x1=4 ! 1 1 i 1 t3+x t e ( 3 ) dt 8 2π −∞ ∼ > 2 3=2 π Z > sin( 3 (−x) + 4 ) < p ; x π (−x)1=4 ! −∞ > :> Mathematical Motivation Resurgence: ‘new’ idea in mathematics (Écalle, 1980; Stokes, 1850) resurgence = unification of perturbation theory and non-perturbative physics perturbation theory generally divergent series • ) series expansion trans-series expansion • −! trans-series ‘well-defined under analytic continuation’ • perturbative and non-perturbative physics entwined • applications: ODEs, PDEs, fluids, QM, Matrix Models, QFT, String• Theory, ... philosophical shift: • view semiclassical expansions as potentially exact Resurgent Trans-Series trans-series expansion in QM and QFT applications: • 1 1 k−1 k l 2 2p c 1 f(g ) = ck;l;p g exp ln −g2 ±g2 p=0 k=0 l=1 X X X perturbative fluctuations k−instantons quasi-zero-modes | {z } J. Écalle (1980): closed set of functions:| {z } | {z } • (Borel transform) + (analytic continuation) + (Laplace transform) − 1 trans-monomial elements: g2, e g2 , ln(g2), are familiar • “multi-instanton calculus” in QFT • new: analytic continuation encoded in trans-series • new: trans-series coefficients ck;l;p highly correlated • new: exponentially improved asymptotics • Resurgence resurgent functions display at each of their singular points a behaviour closely related to their behaviour at the origin. Loosely speaking, these functions resurrect, or surge up - in a slightly different guise, as it were - at their singularities J. Écalle, 1980 n m Perturbation theory perturbation theory generally divergent series • ! 1 n e.g. QM ground state energy: E = n=0 cn (coupling) P n I Zeeman: cn ( 1) (2n)! ∼ − I Stark: cn (2n)! ∼ 1 I cubic oscillator: cn Γ(n + ) ∼ 2 n 1 I quartic oscillator: cn ( 1) Γ(n + ) ∼ − 2 I periodic Sine-Gordon (Mathieu) potential: cn n! ∼ I double-well: cn n! ∼ note generic factorial growth of perturbative coefficients Asymptotic Series vs Convergent Series N−1 n f(x) = cn (x x ) + RN (x) − 0 n=0 X convergent series: RN (x) 0 ;N ; x fixed j j ! ! 1 asymptotic series: N RN (x) x x ; x x ;N fixed j j j − 0j ! 0 “optimal truncation”: −! truncate just before the least term (x dependent!) Asymptotic Series: optimal truncation & exponential precision 1 n n 1 1 1 ( 1) n! x e x E − ∼ x 1 x n=0 X optimal truncation: N 1 exponentially small error opt ≈ x ) −1=x N −N −N e RN (x) N! x N!N pNe j jN≈1=x ≈ N≈1=x ≈ ≈ ≈ px æ æ æ 0.920 æ 0.90 æ æ 0.918 æ æ 0.85 æ æ 0.916 æ æ æ æ æ æ æ æ æ æ æ æ æ 0.914 æ 0.80 æ æ 0.912 0.75 æ ææ N æ N 0 5 10 15 20 2 4 6 8 (x = 0:1) (x = 0:2) Borel summation: basic idea 1 −t n write n! = 0 dt e t alternatingR factorially divergent series: 1 1 1 ( 1)n n! gn = dt e−t (?) − 1 + g t n=0 0 X Z integral convergent for all g > 0: “Borel sum” of the series Borel Summation: basic idea 1 1 1 ( 1)n n! xn = dt e−t − 1 + x t n=0 0 X Z 1.2 1.1 1.0 0.9 0.8 0.7 x 0.0 0.1 0.2 0.3 0.4 non-perturbative imaginary part ) i π − 1 e g ± g but every term in the series is real !?! Borel summation: basic idea 1 −t n write n! = 0 dt e t non-alternatingR factorially divergent series: 1 1 1 n! gn = dt e−t (??) 1 g t n=0 0 X Z − pole on the Borel axis! Borel summation: basic idea 1 −t n write n! = 0 dt e t non-alternatingR factorially divergent series: 1 1 1 n! gn = dt e−t (??) 1 g t n=0 0 X Z − pole on the Borel axis! non-perturbative imaginary part ) i π − 1 e g ± g but every term in the series is real !?! Borel Summation: basic idea 1 1 n −t 1 1 − 1 1 Borel e n! x = dt e = e x Ei )R P 1 x t x x "n=0 # 0 X Z − 2.0 1.5 1.0 0.5 x 0.5 1.0 1.5 2.0 2.5 3.0 -0.5 Borel summation 1 n Borel transform of series f(g) cn g : ∼ n=0 1P cn [f](t) = tn B n! n=0 X new series typically has finite radius of convergence. Borel resummation of original asymptotic series: 1 1 f(g) = [f](t)e−t=gdt S g B Z0 warning: [f](t) may have singularities in (Borel) t plane B Borel singularities avoid singularities on R+: directional Borel sums: eiθ1 1 −t=g θf(g) = [f](t)e dt S g B Z0 C+ C- go above/below the singularity: θ = 0± non-perturbative ambiguity: Im[ f(g)] −! ± S0 challenge: use physical input to resolve ambiguity Borel summation: existence theorem (Nevanlinna & Sokal) R R f(z) analytic in circle CR = z : z < f − 2 2 g N−1 n N N f(z) = an z + RN (z) ; RN (z) A σ N! z j j ≤ j j n=0 X Borel transform 1 R/2 an B(t) = tn n! n=0 X analytic continuation to Im(t) + Sσ = t : t R < 1/σ f j − j g 1/σ 1 1 Re(t) f(z) = e−t=z B(t) dt z Z0 Borel summation in practice 1 n n f(g) cn g ; cn β Γ(γ n + δ) ∼ ∼ n=0 X alternating series: real Borel sum • 1 1 dt 1 t δ=γ t 1/γ f(g) exp ∼ γ t 1 + t βg − βg Z0 " # nonalternating series: ambiguous imaginary part • 1 1 dt 1 t δ=γ t 1/γ Re f( g) exp − ∼ γ P t 1 t βg − βg Z0 − " # π 1 δ/γ 1 1/γ Im f( g) exp − ∼ ±γ βg − βg " # Resurgence and Analytic Continuation another view of resurgence: resurgence can be viewed as a method for making formal asymptotic expansions consistent with global analytic continuation properties “the trans-series really IS the function” ) (question: to what extent is this true/useful in physics?) connection formula: K (e±iπ z ) = K ( z ) i π I ( z ) • 0 j j 0 j j ∓ 0 j j ±iπ − 1 Z (e λ) = Z (λ) i e 2λ Z (λ) ) 1 2 ∓ 1 Resurgence: Preserving Analytic Continuation zero-dimensional partition functions • 1 p − 1 sinh2( λ x) 1 1 1 Z1(λ) = dx e 2λ = e 4λ K0 −∞ pλ 4λ Z 1 π Γ(n + 1 )2 ( 1)n(2λ)n 2 Borel-summable ∼ 2 − 1 2 r n=0 n!Γ 2 X p π= λ p − 1 sin2( λ x) π − 1 1 Z2(λ) = dx e 2λ = e 4λ I0 0 pλ 4λ Z 1 π Γ(n + 1 )2 (2λ)n 2 non-Borel-summable ∼ 2 1 2 r n=0 n!Γ 2 X naively: Z ( λ) = Z (λ) • 1 − 2 Resurgence: Preserving Analytic Continuation zero-dimensional partition functions • 1 p − 1 sinh2( λ x) 1 1 1 Z1(λ) = dx e 2λ = e 4λ K0 −∞ pλ 4λ Z 1 π Γ(n + 1 )2 ( 1)n(2λ)n 2 Borel-summable ∼ 2 − 1 2 r n=0 n!Γ 2 X p π= λ p − 1 sin2( λ x) π − 1 1 Z2(λ) = dx e 2λ = e 4λ I0 0 pλ 4λ Z 1 π Γ(n + 1 )2 (2λ)n 2 non-Borel-summable ∼ 2 1 2 r n=0 n!Γ 2 X naively: Z ( λ) = Z (λ) • 1 − 2 connection formula: K (e±iπ z ) = K ( z ) i π I ( z ) • 0 j j 0 j j ∓ 0 j j ±iπ − 1 Z (e λ) = Z (λ) i e 2λ Z (λ) ) 1 2 ∓ 1 Resurgence: Preserving Analytic Continuation Borel summation • 1 π 1 − t 1 1 Z (λ) = dt e 2λ F ; ; 1; t 1 2 2λ 2 1 2 2 − r Z0 directional Borel summation: • iπ −iπ Z1(e λ) Z1(e λ) − 1 π 1 − t 1 1 1 1 = dt e 2λ F ; ; 1; t i" F ; ; 1; t + i" 2 2λ 2 1 2 2 − − 2 1 2 2 r 1 Z 1 π 1 − 1 − t 1 1 = (2i) e 2λ dt e 2λ F ; ; 1; t − 2 2λ 2 1 2 2 − r Z0 − 1 = 2 i e 2λ Z (λ) − 1 (Im F 1 ; 1 ; 1; t i" = F 1 ; 1 ; 1; 1 t ) 2 1 2 2 − 2 1 2 2 − ±iπ − 1 connection formula: Z (e λ) = Z (λ) i e 2λ Z (λ) • 1 2 ∓ 1 reflection formula: (1 + z) (1 z) = 1 π cot(π z) • − − z − 1 1 π Im (1 + iy) + + π e−2π k y ) ∼ −2y 2 k X=1 “raw” asymptotics inconsistent with analytic continuation resurgence fixes this Resurgence: Preserving Analytic Continuation d Stirling expansion for (x) = dx ln Γ(x) is divergent 1 1 1 1 174611 (1 + z) ln z + + + + ::: ∼ 2z − 12z2 120z4 − 252z6 ··· 6600z20 − functional relation: (1 + z) = (z) + 1 • z formal series Im (1 + iy) 1 + π ) ∼ − 2y 2 Resurgence: Preserving Analytic Continuation d Stirling expansion for (x) = dx ln Γ(x) is divergent 1 1 1 1 174611 (1 + z) ln z + + + + ::: ∼ 2z − 12z2 120z4 − 252z6 ··· 6600z20 − functional relation: (1 + z) = (z) + 1 • z formal series Im (1 + iy) 1 + π ) ∼ − 2y 2 reflection formula: (1 + z) (1 z) = 1 π cot(π z) • − − z − 1 1 π Im (1 + iy) + + π e−2π k y ) ∼ −2y 2 k X=1 “raw” asymptotics inconsistent with analytic continuation resurgence fixes this Transseries Example: Painlevé II (matrix models, fluids ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    100 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us