M3. Tensor Fields in Curvilinear Coordinates

M3. Tensor Fields in Curvilinear Coordinates

Mathematical tools M3. Tensor fields in curvilinear coordinate systems AleˇsJanka office Math 0.107 [email protected] http://perso.unifr.ch/ales.janka/mechanics November 24, 2010, Universit´ede Fribourg Mathematical tools M3. Tensor fields in curvilinear coordinates 1. Curvilinear coordinate system Position vector of point M (with respect to the origin): −−→OM = x Let x : R3 R3 be a smooth bijective mapping: → x :(ξ1, ξ2, ξ3)T x(ξ1, ξ2, ξ3) 7→ Curvilinear coordinates of a point: ξ1, ξ2, ξ3. Coordinate curves through a point: parametric curves given by g 2 x( 1, , 3 ) 2 3 ξ β ξ x1(α): α x(α, ξ , ξ ) 7→ 1 3 M g x2(β): β x(ξ , β, ξ ) x 1 7→ 1 2 x3(γ): γ x(ξ , ξ , γ) 7→ O x( α , ξ 2 , ξ 3 ) 1 2 3 1 2 3 all 3 curves pass through x(ξ , ξ , ξ ) (=point M with ξ , ξ , ξ fixed). Mathematical tools M3. Tensor fields in curvilinear coordinates 1. Curvilinear coordinate system: local basis Local basis: composed of tangents to the coordinate curves: ∂x g = i ∂ξi 3 We suppose here that g1, g2 and g3 are linearly independent in R . Covariant local basis: differential of the position vector x: ∂x dx = dξi = g dξi ∂ξi i “How much x(ξ1, ξ2, ξ3) changes if we perturb ξi by dξi .” Contravariant basis is induced as before so that g gj = δj i · i Metric tensor: g = g g ... (as before) ij i · j Huge difference with what we have seen so far: 1 2 3 gi = gi (x(ξ , ξ , ξ )) ie. the basis is not constant for all points x R3! ∈ Mathematical tools M3. Tensor fields in curvilinear coordinates 1.1 Curvilinear coordinate system: infinitensimal volume Infinitensimal volume due to coordinate change: +d1 1 3 dV = (g g ) g dξ1 dξ2 dξ3 x( ξ ξ , β , ξ ) | 1 × 2 · 3| g2 1 3 √g x( ξ , β , ξ ) | {z } g T 1 with g = det[gij ] = det(F F) = Ωx 2 det (F), where F = g g g . +d2 2 3 1| 2| 3 x( α , ξ ξ , ξ ) i O 2 In cartesian coordinates: dx = dx ei x( α , ξ , ξ 3 ) and dV = dx1 dx2 dx3. Volume integral of a scalar field f (x) in curvilinear coords: f (x) dx1 dx2 dx3 = f (x(ξ1, ξ2, ξ3)) √g dξ1 dξ2 dξ3 dV ΩZx ΩZξ dV | {z } | {z } with Ωx = x(Ωξ). Mathematical tools M3. Tensor fields in curvilinear coordinates 2. Differential (resp. gradient) of a scalar field Scalar field: f : x Ω R3 R ∈ ⊂ 7→ Gradient of f (x) (with respect to the position x): it is a vector f R3 such that for all dx R3: ∇ ∈ ∈ f (x + dx) = f (x) + f (x) dx +o(dx) ∇ · df here, df is the differential of f (x) along| {zdx.} Gradient and the directional derivative of f (x) The gradient of f (x) is such a vector f R3 for which ∇ ∈ d 3 [ f (x)] d = f (x + αd) d R . ∇ · dα ∀ ∈ α=0 The definition is independent of the choice of basis g1, g2, g3 Hence, f (x) is a field of tensors of order N = 1 (vector field). ∇ Mathematical tools M3. Tensor fields in curvilinear coordinates 2.1 Coordinates of f in the local basis ∇ f (x+dx) = f (x) + f (x) dx + o(dx) ... definition of gradient ∇ · ∂f = f (x) + dξi + o(dξk ) ... f (x) as a function of ξi ∂ξi Xk ∂f = f (x) + δi dξj + o(dξk ) ∂ξi j Xk ∂f = f (x) + gi g dξj +o(dx) ... cf. the first line ∂ξi · j dx f (x) ∇ | {z } ∂f | {z } Hence, f = gi Covariant components of f (x) are: ∇ dξi ⇒ ∇ ∂f ( f ) = ... They coincide with ∂f ! ∇ i ∂ξi ∂ξi f =( f ) = ∂f is named “the covariant derivative of scalar field f ” ∇i ∇ i ∂ξi The differential df then expressed “in coordinates”: df = f dξi ∇i Mathematical tools M3. Tensor fields in curvilinear coordinates 3. Differential (resp. gradient) of a vector field Vector field u(x) : (e.g. velocity, displacements, el. current, . ) field of tensors of order N = 1: 3 3 u : x Ω R R ∈ ⊂ → Components of u in the local basis g : h i i i i u(x) = u gi . both u and gi depend on x! Differential du: change in u going from x to x+dx (up to o(dx)): ∂u u(x+dx) u(x) + du = u(x) + dξj = u(x) + u dx ≈ ∂ξj ∇ · i i i From u = u gi , by chain rule (both u and gi depend on x, ie. ξ !): ∂ui ∂g du = dξj g + ui i dξk (1) ∂ξj i ∂ξk Change due to changing local coordinates ui of u Change due to the curvature of the coordinate system Mathematical tools M3. Tensor fields in curvilinear coordinates 3.1 Differential of a vector field: contravariant components Contravariant components of du: du` = du g`, du = du` g · ` with respect to the local basis g at the point x (not at x+dx!). h i i ∂ui ∂g du = dξj g + ui i dξk g` ∂ξj i ∂ξk · Hence, the contravariant components of du: ∂ui ∂g du` = du g` = dξj g g` +ui i g` dξk · ∂ξj i · ∂ξk · ` δi ∂u` ∂g | {z } ∂u` = dξj + ui i g` dξj = + Γ` ui dξj ∂ξj ∂ξj · ∂ξj ij ` Γij where we define | {z } ∂g Γ` = i g`, ij ∂ξj · the Christoffel symbols of the second kind (not a tensor!). Mathematical tools M3. Tensor fields in curvilinear coordinates 3.2 Differential of a vector field: covariant components i Analogously to (1), from u = ui g , by chain rule: ∂u ∂gi du = i dξj gi + u dξk ∂ξj i ∂ξk Change due to changing local coordinates ui of u Change due to the curvature of the coordinate system Aside differentiation to get rid of the contravariant basis gi (which is less used): ∂ gi g = δi · ` ` ∂ξj ∂gi ∂g g + gi ` = 0 ∂ξj · ` · ∂ξj ∂gi ∂g Hence, g = gi ` ∂ξj · ` − · ∂ξj Mathematical tools M3. Tensor fields in curvilinear coordinates 3.2 Differential of a vector field: covariant components Covariant components of du: du = du g , du = du g`: ` · ` ` ∂u ∂gi du = i dξj gi + u dξk g ∂ξj i ∂ξk · ` Hence, by applying the aside differentiation: ∂u ∂gi du = du g = i dξj gi g +u g dξk ` · ` ∂ξj · ` i ∂ξk · ` i δ` ∂u` ∂g` | {z } ∂u` = dξj u gi dξk = u Γi dξj ∂ξj − i ∂ξk · ∂ξj − i `j i Γ`k | {z } Mathematical tools M3. Tensor fields in curvilinear coordinates 3.3 Differential of a vector field and covariant derivatives Perturbations of the position x(ξ1, ξ2, ξ3) by dξ1, dξ2, dξ3 du: −→ ∂u dx = dξi g , du = dξj = u dx = du` g = du g` i ∂ξj ∇ · ` ` Contravariant and covariant coordinates of the differential du: ∂u` du` = + Γ` ui dξj ∂ξj ij u` ∇j | {z } ∂u du = ` Γi u dξj ` ∂ξj − `j i u ∇j ` | {z } where u` is the covariant derivative of contravariant tensor ∇j and u is the covariant derivative of covariant tensor ∇j ` Mathematical tools M3. Tensor fields in curvilinear coordinates 3.4 Covariant derivatives and gradient of a vector field Differential du using covariant derivatives resp. du = u dx: ∇ · ∂u` du = du` g = + Γ` ui g dξj ` ∂ξj ij ` u` ∇j = u` g δj dξk = u` g gj g dξk ∇j ` |k {z ∇j } ` ⊗ · k gj g u dx · k ∇ Hence, the gradient u|{z}is a 2nd order| tensor{z with:} | {z } ∇ ∂u` u = + Γ` ui g gj = u` g gj ∇ ∂ξj ij ` ⊗ ∇j ` ⊗ the covariant derivative u` is in fact the tensor u in ⇒ ∇j ∇ mixed components u ` !! ∇ , j Similarly, u are the 2 covariant components u of u: ⇒ ∇j ` × ∇ `,j ∇ ∂u` i ` j ` j u = Γ ui g g = j u` g g ∇ ∂ξj − `j ⊗ ∇ ⊗ h i h i Mathematical tools M3. Tensor fields in curvilinear coordinates 4. Covariant derivatives of higher order tensor T , N 2 ≥ Remember: covariant deriv. of scalar field = its partial deriv.: ∂f f = ∇k ∂ξk We can exploit it: Multiply T by N arbitrary vector-fields a, b, . to form a scalar f . Example for 2nd-order tensor T : ij f = T ai bj Apply the “covariant = partial” trick on f : ∂ T ij a b = T ij a b ∇k i j ∂ξk i j ∂T ij ∂a ∂b = a b + T ij i b + T ij a j ∂ξk i j ∂ξk j i ∂ξk For the arbitrary vector fields a, b, . we know how to make a covariant derivative: ∂a ∂a a = ` Γi a i.e. i = a + Γm a ∇j ` ∂ξj − `j i ∂ξk ∇k i ik m Mathematical tools M3. Tensor fields in curvilinear coordinates 4. Covariant derivatives of higher order tensor T , N 2 ≥ In (T ij a b ), replace ∂ of a, b,. by terms containing : ∇k i j ∂ξk ∇k ∂T ij ∂a ∂b T ij a b = a b + T ij i b + T ij a j ∇k i j ∂ξk i j ∂ξk j i ∂ξk ∂T ij = a b + T ij ( a + Γm a ) b + ∂ξk i j ∇k i ik m j +T ij a b + Γm b i ∇k j jk m ∂T ij = + Γi T `j + Γj T i` a b + ∂ξk `k `k i j +T ij a b + T ij a b ∇k i j i ∇k j Here, we re-indexed conveniently dummy indices in order to regroup terms with “ai bj ”. By analogy with (a b c) = a bc + ab c + abc , the term in brackets is T ij : · · 0 0 0 0 ∇k ∂T ij T ij = + Γi T `j + Γj T i` ∇k ∂ξk `k `k Mathematical tools M3.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us