Cryptography: Block Ciphers Edward J. Schwartz Carnegie Mellon University Credits: Slides originally designed by David Brumley. Many other slides are from Dan Boneh’s June 2012 Coursera crypto class. What is a block cipher? Block ciphers are the crypto work horse n bits n bits Block of plaintext E, D Block of ciphertext Key k bits Canonical examples: 1. 3DES: n = 64 bits, k = 168 bits 2. AES: n = 128 bits, k = 128, 192, 256 bits 2 Block ciphers built by iteration key k key expansion key k1 key k2 key k3 key kn m1 m2 m3 mm R(k1, ∙) R(k2, ∙) R(k3, ∙) R(kn, ∙) c R(k, m) is called a round function Ex: 3DES (n=48), AES128 (n=10) 3 Performance: Stream vs. block ciphers Crypto++ 5.6.0 [Wei Dai] AMD Opteron, 2.2 GHz (Linux) Cipher Block/key size Throughput [MB/s] Stream RC4 126 Salsa20/12 643 Sosemanuk 727 Block 3DES 64/168 13 AES128 128/128 109 4 Block ciphers The Data Encryption Standard (DES) 5 History of DES • 1970s: Horst Feistel designs Lucifer at IBM key = 128 bits, block = 128 bits • 1973: NBS asks for block cipher proposals. IBM submits variant of Lucifer. • 1976: NBS adopts DES as federal standard key = 56 bits, block = 64 bits • 1997: DES broken by exhaustive search • 2000: NIST adopts Rijndael as AES to replace DES. AES currently widely deployed in banking, commerce and Web 6 DES: core idea – Feistel network Given one-way functions Goal: build invertible function n - bits R0 R1 R2 Rd-1 Rd n f1 f2 • • • fd - bits L0 L1 L2 Ld-1 Ld ⊕ ⊕ ⊕ input output In symbols: 7 Feistel network - inverse Claim: Feistel function F is invertible Proof: construct inverse ⊕ Ri Ri+1 inverse Ri+1 Ri fi+1 fi+1 Li Li+1 Li+1 Li ⊕ 8 Decryption circuit ⊕ ⊕ n ⊕ - bits R R d d-1 Rd-2 R1 R0 n f f d d-1 • • • f1 - bits L L d d-1 Ld-2 L1 L0 • Inversion is basically the same circuit, with f1, …, fd applied in reverse order • General method for building invertible functions (block ciphers) from arbitrary functions. • Used in many block ciphers … but not AES 9 Recall from Last Time: Block Ciphers are (Modeled As) PRPs Pseudo Random Permutation (PRP) defined over (K,X) such that: 1. Exists “efficient” deterministic algorithm to evaluate E(k,x) 2. The function E(k, ∙) is one-to-one 3. Exists “efficient” inversion algorithm D(k,y) X E(k,⋅), k ∊ K X D(k, ⋅), k ∊ K 10 Luby-Rackoff Theorem (1985) is a secure PRF ⇒ 3-round Feistel is a secure PRP n - bits R0 R1 R2 R3 f f f n - bits L0 L1 L2 L3 ⊕ ⊕ ⊕ input output 11 DES: 16 round Feistel network 56 bits key k 48 bits key expansion key k1 key k2 • • • key k16 64 bits 64 bits 64 R0 R1 R2 R15 R16 -1 IP f1 f2 • • • f16 IP L0 L1 L2 L15 L16 ⊕ ⊕ ⊕ 16 round Feistel network To invert, use keys in reverse order 12 The function F(ki, x) 32 bits x ki 48 bits E 48 bits x’ ⊕ 48 bits 6 6 6 6 6 6 6 6 S1 S2 S3 S4 S5 S6 S7 S8 4 4 4 4 4 4 4 4 32 bits P S-box: function {0,1}6 ⟶ {0,1}4, 32 bits implemented as lookup table. y 13 The S-boxes e.g., 011011 ⟶ 1001 14 The S-boxes • Alan Konheim (one of the designers of DES) commented, "We sent the S-boxes off to Washington. They came back and were all different.“ • 1990: (Re-)Discovery of differential cryptanalysis – DES S-boxes resistant to differential cryptanalysis! – Both IBM and NSA knew of attacks, but they were classified 15 Block cipher attacks 16 Exhaustive Search for block cipher key Goal: given a few input output pairs (mi, ci = E(k, mi)) i=1,..,n find key k. Attack: Brute force to find the key k. Homework: What is the probability that the key k found with one <m,c> pair is correct? For two pairs? 17 DES challenge msg = “The unknown messages is:XXXXXXXX…“ CT = c1 c2 c3 c4 56 Goal: find k ∈ {0,1} s.t. DES(k, mi) = ci for i=1,2,3 -1 Proof: Reveal DES (k, c4) 1976 DES adopted as federal standard 1997 Distributed search 3 months 1998 EFF deep crack 3 days $250,000 1999 Distributed search 22 hours 2006 COPACOBANA (120 FPGAs) 7 days $10,000 ⇒ 56-bit ciphers should not be used (128-bit key ⇒ 272 days) 18 Strengthening DES Method 1: Triple-DES Let E : K × M ⟶ M be a block cipher Define 3E: K3 × M ⟶ M as: 3E( (k1,k2,k3), m) = E(k1, D(k2, E(k3, m) ) ) 3DES - Key-size: 3×56 = 168 bits k1 = k2 = k3 => DES - 3×slower than DES - Simple attack in time: ≈2118 19 Why not 2DES? • Define 2E( (k1,k2), m) = E(k1 , E(k2 , m) ) key-len = 112 bits for 2DES m E(k2,⋅) E(k1,⋅) c Naïve Attack: M = (m1,…, m10), C = (c1,…,c10). 56: For each k2∈{0,1} 56: For each k1∈{0,1} if E(k2, E(k1, mi)) = ci then (k2, k1) k … k … 2 1 2112 checks m c' c’’ … … c’’ = c? 20 Meet in the middle attack • Define 2E( (k1,k2), m) = E(k1 , E(k2 , m) ) key-len = 112 bits for 2DES m E(k2,⋅) E(k1,⋅) c … … m c' c’’ c … … Idea: key found when c’ = c’’: E(ki, m) = D(kj, c) 21 Meet in the middle attack • Define 2E( (k1,k2), m) = E(k1 , E(k2 , m) ) key-len = 112 bits for 2DES m E(k2,⋅) E(k1,⋅) c Attack: M = (m1,…, m10) , C = (c1,…,c10). • step 1: build table. k0 = 00…00 E(k0 , M) 1 1 nd k = 00…01 E(k , M) 56 sort on 2 column 2 2 2 k = 00…10 E(k , M) entries ⋮ ⋮ maps c’ to k2 kN = 11…11 E(kN , M) 22 Meet in the middle attack m E(k2,⋅) E(k1,⋅) c k0 = 00…00 E(k0 , M) M = (m1,…, m10) , C = (c1,…,c10) k1 = 00…01 E(k1 , M) k2 = 00…10 E(k2 , M) ⋮ ⋮ • step 1: build table. kN = 11…11 E(kN , M) • Step 2: for each k∈{0,1}56: test if D(k, c) is in 2nd column. i i if so then E(k ,M) = D(k,C) ⇒ (k ,k) = (k2,k1) 23 Meet in the middle attack m E(k2,⋅) E(k1,⋅) c Time = 256log(256) + 256 log(256) < 263 << 2112 [Build & Sort Table] [Search Entries] Space ≈ 256 [Table Size] Same attack on 3DES: Time = 2118 , Space ≈ 256 m E(k3,⋅) E(k2,⋅) E(k1,⋅) c 24 Method 2: DESX E : K × {0,1}n ⟶ {0,1}n a block cipher Define EX as EX(k1, k2, k3, m) = k1 ⨁ E(k2, m⨁k3 ) For DESX: key-len = 64+56+64 = 184 bits … but easy attack in time 264+56 = 2120 Note: k1⨁E(k2, m) and E(k2, m⨁k1) does nothing! 25 Attacks on the implementation 1. Side channel attacks: – Measure time to do enc/dec, measure power for enc/dec 16 rounds [Kocher, Jaffe, Jun, 1998] Card is doing DES smartcard IP IP-1 2. Fault attacks: – Computing errors in the last round expose the secret key k ⇒ never implement crypto primitives yourself … 26 Block ciphers AES – Advanced encryption standard 27 The AES process • 1997: DES broken by exhaustive search • 1997: NIST publishes request for proposal • 1998: 15 submissions • 1999: NIST chooses 5 finalists • 2000: NIST chooses Rijndael as AES (developed by Daemen and Rijmen at K.U. Leuven, Belgium) Key sizes: 128, 192, 256 bits Block size: 128 bits 28 AES core idea: Subs-Perm network DES is based on Feistel networks AES is based on the idea of substitution-permutation networks That is, alternating steps of substitution and permutation operations 29 AES: Subs-Perm network k1 k2 kn S1 S1 S1 S2 S2 S2 S3 S3 S3 ⊕ ⊕ • • • ⊕ input output S8 S8 S8 subs. perm. inversion layer layer 30 AES128 schematic 10 rounds 4 (1) ByteSub (1) ByteSub (1) ByteSub 4 (2) ShiftRow (2) ShiftRow input ⊕ ⊕ ⊕ • • • ⊕ (2) ShiftRow (3) MixColumn (3) MixColumn k0 k1 k2 k9 ⊕ 4 k 4 10 output 4 4 key Key expansion: 16 bytes ⟶176 bytes 31 The round function • ByteSub: a 1 byte S-box. 256 byte table (easily computable) • ShiftRows: s0,0 s0,1 s0,2 s0,3 s0,0 s0,1 s0,2 s0,3 s1,0 s1,1 s1,2 s1,3 s1,1 s1,2 s1,3 s1,0 s2,0 s2,1 s2,2 s2,3 s2,2 s2,3 s2,0 s2,1 s3,0 s3,1 s3,2 s3,3 s3,3 s3,0 s3,1 s3,2 • MixColumns: MixColumns() s’ s0,0 s0,10,c s0,2 s0,3 s’0,0 s’0,c0,1 s’0,2 s’0,3 s’ s1,0 s1,11,c s1,2 s1,3 s’1,0 s’1,c1,1 s’1,2 s’1,3 s’ s2,0 s2,12,c s2,2 s2,3 s’2,0 s’2,c2,1 s’2,2 s’2,3 s’ s3,0 s3,13,c s3,2 s3,3 s’3,0 s’3,c3,1 s’3,2 s’3,3 32 Code size/performance tradeoff Code size Performance Pre-compute round fastest: table largest functions lookups and xors (24KB or 4KB) Pre-compute S-box only smaller slower (256 bytes) No pre- smallest slowest computation 33 Size + performance (Javascript AES) AES in the browser AES library (6.4KB) No pre-computed tables (1) Uncompress code (one time effort) (2) Pre-compute tables (one time effort) (3) Perform encryption using tables Implementation: Stanford Javascript Crypto Library https://crypto.stanford.edu/sjcl/ 34 Modes of operation 36 Electronic Code Book (ECB) Mode • • • PT: m1 m2 m3 m4 m5 mn E(k, mi) • • • CT: c1 c2 c3 c4 c5 cn Problem: m1 = m2 ⟶ c1 = c2 37 What can possibly go wrong? Plaintext Ciphertext Images from Wikipedia 38 Semantic security for ECB mode ECB is not semantically secure for messages that contain more than one block Two blocks m0 = “Hello World” Challenger m1 = “Hello Hello” Adversary A k ← K (c1, c2) ← E(k,mb) if c1 = c2 output 1 else output 0 AdvSS[A,ECB] = 1 39 Deterministic counter mode from a PRF F: EDETCTR(k,m) = m[0] m[1] m[2] • • • m[L] ⊕ F(k,0) F(k,1) F(k,2) • • • F(k,L) c[0] c[1] c[2] • • • c[L] Stream cipher built from a PRF (e.g.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages57 Page
-
File Size-