Predicting Cancer Patient Survival Using Dynamic Contrast Enhanced MRI

Predicting Cancer Patient Survival Using Dynamic Contrast Enhanced MRI

Predicting Cancer Patient Survival Using Dynamic Contrast Enhanced MRI A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Medical and Human Sciences 2016 Ben Dickie School of Medicine Contents 1 Introduction 18 1.1 Locally advanced cancers . 18 1.1.1 The need for personalised treatments . 18 1.1.2 TNM stage . 24 1.1.3 Tumour microvasculature and hypoxia . 26 1.1.4 Existing methods for measuring microvascular function . 28 1.1.5 Existing methods for measuring tumour hypoxia . 29 1.2 Magnetic resonance imaging . 32 1.2.1 Nuclear magnetic resonance . 32 1.2.2 The bulk longitudinal magnetisation . 34 1.2.3 Nuclear excitation and relaxation . 36 1.2.4 Spatial localisation of NMR signals . 40 1.2.5 Gradient and spin echoes . 45 1.2.6 Image contrast . 45 1.3 Dynamic contrast-enhanced MRI . 49 1.3.1 Quantitative DCE-MRI . 50 1.3.2 A Quantitative DCE-MRI experiment . 51 1.3.3 Defining the tumour region of interest (ROIt) . 52 1.3.4 Estimating pre-contrast T1 ..................... 55 1.3.5 Dynamic imaging: measuring the TRF and AIF . 56 1.3.6 Tracer kinetic modelling . 60 1.3.7 Prognostic value of pre-treatment microvascular function . 66 1.3.8 Prognostic value of pre-treatment intratumoural microvascular heterogeneity . 68 1.4 Predicting patient prognosis . 78 1.4.1 Endpoints and censoring . 79 1.4.2 Modelling failure time . 80 1.4.3 Estimating S(t), h(t), and H(t) . 83 1.4.4 The Kaplan-Meier and Nelson-Aalen estimators . 85 1.4.5 Parametric models of S(t), h(t), and H(t) . 87 1.4.6 Parametric regression . 89 1.4.7 Cox proportional hazards regression . 89 1.4.8 Testing for differences between two survival distributions . 93 1.4.9 Random survival forest models . 95 1.4.10 Fitting an RSF model . 99 1.4.11 Ranking variables with the RSF . 104 1.4.12 Variable selection using RSF models . 107 1 1.5 Summary, hypotheses and aims . 109 2 Improved accuracy and precision of tracer kinetic parameters by joint fitting to variable flip angle and dynamic contrast-enhanced MRI data 112 2.1 Contribution of authors . 112 2.2 Abstract . 112 2.3 Introduction . 113 2.4 Theory . 115 2.4.1 Sequential estimation . 115 2.4.2 Joint estimation . 118 2.5 Methods . 118 2.5.1 Synthetic data . 120 2.5.2 Clinical data . 122 2.5.3 AIF errors . 123 2.5.4 Monte Carlo and residual bootstrap analyses . 124 2.5.5 Model fitting . 124 2.5.6 Accuracy and precision . 125 2.5.7 Statistical analysis . 125 2.5.8 Sample size . 126 2.6 Results . 127 2.7 Discussion . 134 2.8 Acknowledgments . 138 2.9 Supporting materials . 139 2.9.1 Comparison of sequential and joint VFA T1,0 estimates with reference measurements . 139 2.9.2 Equality of S0,v and S0,d . 142 3 Predicting disease-free survival in locally advanced cervical cancer: a prospective DCE-MRI study 144 3.1 Contribution of authors . 144 3.2 Abstract . 144 3.3 Introduction . 145 3.4 Methods . 146 3.4.1 Patients . 146 3.4.2 Treatment . 147 3.4.3 Clinicopathologic variables . 147 3.4.4 MR imaging . 147 3.4.5 Tracer kinetic analysis . 148 3.4.6 Survival analysis . 151 3.5 Results . 153 2 3.6 Discussion . 163 3.6.1 Clinical relevance of findings . 164 3.6.2 Study limitations . 165 3.6.3 Conclusions . 166 3.7 Acknowledgements . 166 4 Imaging biomarkers of intratumoural microvascular heterogeneity are prognostic for disease-free survival in cervix, bladder, and head and neck cancers 167 4.1 Contribution of authors . 167 4.2 Abstract . 167 4.3 Introduction . 168 4.4 Methods . 170 4.4.1 Experimental design . 170 4.4.2 Patients . 173 4.4.3 Treatment . 173 4.4.4 Clinicopathologic variables . 174 4.4.5 MR imaging . 174 4.4.6 Measurement of microvascular function . 175 4.4.7 Measurements of microvascular heterogeneity . 176 4.4.8 Patient follow-up . 179 4.4.9 Statistical analysis . 179 4.5 Results . 180 4.6 Discussion . 188 4.7 Acknowledgements . 194 4.8 Supporting materials . 194 4.8.1 Additional information on the measurement and interpretation of heterogeneity biomarkers . 194 4.8.1.1 Histogram biomarkers . 194 4.8.1.2 Texture biomarkers . 195 4.8.1.3 Multispectral biomarkers . 195 4.8.1.4 Partitioning biomarkers . 196 trans 4.8.2 Proposed biomarkers: vvas and A . 196 5 High intratumoural variance in plasma flow is an adverse factor for locally advanced cancers of the cervix, bladder, and head and neck 198 5.1 Contribution of authors . 198 5.2 Abstract . 198 5.3 Introduction . 199 5.4 Methods . 202 3 5.4.1 Experimental design . 202 5.4.2 Patients . 202 5.4.3 Treatment . 203 5.4.4 Follow-up . 204 5.4.5 Clinicopathologic variables . 204 5.4.6 Imaging . 204 5.4.7 Tracer kinetic analysis . 205 5.4.8 Gaussian process regression . 206 5.4.9 Statistical analysis . 207 5.5 Results . 208 5.6 Discussion . 213 5.6.1 Limitations . 214 5.6.2 Conclusions . 215 5.7 Acknowledgements . 215 5.8 Supporting materials . 216 5.8.1 Modelling the appearance of parameter maps using a Gaussian process model . 216 6 Discussion and conclusions 219 6.1 Discussion . 219 6.1.1 Further work . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    269 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us