Integer DCT-Based Image Coding

Integer DCT-Based Image Coding

Integer DCT-based Image Coding Changjiang Wei Pengwei Hao Qingyun Shi National Lab on Machine Perception, Peking University Beijing, 100871, CHINA Abstract coefficients used in this scheme is determined by DCT-based image/video coding is still popular now. using a performance metric for compression. In this paper, a novel embedded image coding Furthermore, a simple differencing scheme is scheme based on integer reversible DCT is proposed. performed on the coefficient that exploits correlation It integrates lossy and lossless coding schemes between high-energy DCT coefficients in perfectly. The transform is implemented by factoring neighboring blocks of an image. Compared with ours, the float DCT transform matrix into a series of the efficiency of their method is low. The essential integer reversible transform matrices. We apply the feature of our method is that our transformation is series of matrices to image samples, and encode the integer reversible, so lossless coding can be coefficients by several effective coding algorithms. implemented by encoding the transform coefficients Our simulation results show that the integer DCT losslessly. coding method is superior to the float DCT coding As we know, many effective still image coding method for lossless coding, and the performances are schemes are DWT-based, such as EZW [5], SPIHT [6], close for lossy coding. EBCOT[7], etc. The high performances of these DWT-based algorithms are partly owing to the 1. Introduction wavelet transform, but we must emphasize that much Image coding is of great interest in applications of the performance gain is obtained by carefully where efficiency with respect to data storage or designed quantizers (e.g., zerotree quantizer) that are transmission bandwidth is sought. Transform based tailored to transform structure. All of these adopted image coding has become the main methods of image the effective bit-plane quantization techniques and coding and video coding, such as JPEG, JPEG2000, took full advantage of the regularities of distributions MPEG-1, MPEG-2, H.263, MPEG-4 etc. of the transform coefficients that are not particular The discrete cosine transform (DCT) has been features of wavelets. So, for other transforms we can applied extensively to the area of image coding. It has also utilize the coding algorithm. Moreover DCT has nice decorrelation and excellent energy-compaction many advantages over DWT, especially in video properties, and as a result it was chosen as the basis coding, the ongoing video coding specifications are for the Joint Photography Experts’ Group (JPEG) DCT-based, so the DCT presented by our paper can still-picture compression standard. Moreover, DCT be applied to video coding. Our method integrates can be easily implemented by hardware. Nevertheless integer DCT with many coding schemes, such as these methods adopted float DCT which is not integer EZW, SPIHT, EBCOT that preserve both the finer reversible. If we have to use float DCT to implement feature of DCT and good coding efficiency. lossless coding, the corresponding residual image In Section II we will introduce the integer DCT; must be encoded which would result in the decrease the encoding pass is discussed in Section III, and of coding efficiency. In [4], the author presented a some experimental results are illustrated in Section DCT-based lossless coding scheme, the quantization IV. is only for the high-energy DCT coefficients in each block, an inverse DCT of only these quantized 2. Integer DCT coefficients are carried out, then an error residual In [3], Yan proposed an integer DCT method by sequence is formed to be coded. The number of factoring the butterfly calculations of DCT. In [1], Hao presented the general algorithm of reversible styles. linear transforms, the conclusion is, a linear Obviously, reverse transform is transform has integer implementations as long as it is ≠ ykmk , invertible and finite dimensional. In paper [2], Hao x = mN−1 k −+ = obtained optimal results, (i) A linear transform has ysysykmmmiimii∑∑,,, iim==+11 integer implementations as long as it is invertible and finite dimensional. (ii) For a N-by-N nonsingular Then we can see that the linear transform matrix, there are not more than 3 TERMs or not more y=Sm x can be implemented reversibly for integers, than N+1 SERMs except a possible permutation so the transform y=Ax can also be implemented matrix in the TERM or the SERM factorizaiton. In for integers step by step. The general transform this paper, we use the factorization method to obtain procedures are: first, to permute the input signal if = the series of integer DCT transform matrices. needed, then to apply y=Sm x (m 0,1,2,...,8 ) in 2.1 Matrix factorization turn for elementary integer transform steps, and For 8 by 8 DCT transform matrix A, with the finally to permute the output signal y if needed. So method of [2], we can obtain many factorization y is the integer result of transform and reversible. It results. Through optimized selection, we choose the is an approximated implementation of the original following factorization: float DCT, but it is integer reversible. There are no selection algorithms given in [2]. A= PSSSSSSSSSP LR876543210 So, we need select the optimal factorization result T T from matrix factorizations. Here we present a SIes= + , m =1,2,...,8 , SIes=+ mmm 080 nearly-optimal selection method. We define optimal rule to make integer transform results close to float Where, em is the m-th column vector of 8-order ones. Consider integer transform []yAx= [ ], let identity matrix, sm is a vector that the m-th element = is 0, where m 1,2,...,8 , s0 is a vector that the dk be the error caused by integer conversion in Sk 8th element is 0. transform calculation, we have, == +++++ In following text, we will show the transform of []yAxPSSSPxdd [ ]LR (81001 ( ( ( ) ) dd 78 ) ) 778 these matrices are integer reversible. =+ +=+ + Ax PLmkLkk()()∑∑∏ S d d88 Ax P T d d kk==00mk=+1 Consider transform ySx= , x presents m 8 where = , kN=−0,1, 2,… , 1 . TSkm∏ integer signal, from following equation mk=+1 yx100 For the form of S , the elements of d are all 11 k k ySx===yxss1 zeros except the k-th one, for k =1, 2,… , 7 . The mmm mmN,1 , elements of d are all zeros except the 8th one. So yx01 0 NNwe can select the factorization result which makes the We can get the integer transform result: absolute value of the k-th column of all Tk and the xkm, ≠ k y = mN−1 8th column of T as small as possible, where k ++ = 0 xsxsxkmmmiimii∑∑,,, iim==+11 k =1, 2,… , 7 . We adopt a local search method to Where kN= 1,2,..., , [] denotes integer conversion, can be rounding, chopping, carry-in, or some other select the nearly-optimal factorization result. Finally, we choose following factorizaiton result: subbands are the same. Second, we classify each 8x8 block to 10 T s = []1.165 , 1.236 , 1.201 , 1.014 , -0.367 , 0.442 , -1.962 , 0 0 different frequency subbands (figure3), and then we = []T s1 0 , 1.033 , 0.364 , 0.007 , -0.361 , 0.395 , -0.715 , -0.462 rearrange the coefficients of same frequency in each = []T block according to the block order. This rearranging s2 -0.377 , 0 , 0.532 , 0.199 , -0.450 , 0.608 , -0.876 , -0.272 method corresponds to the tree decomposition of T s = []0.424 , -0.836 , 0 , 0.721 , -0.701 , 0.436 , -0.847 , -0.163 3 wavelet coefficients. T = [] s4 0.589 , -0.160 , 0.027 , 0 , 0.414 , 0.329 , -0.898 , -0.227 T 3 Encoding s = []0.067 , 0.560 , 0.759 , -0.537 , 0 , 0.324 , -0.130 , -0.320 5 3.1 Encoding algorithms with complete T =[]-0.342 , 0.216 , 0.270 , -0.191 , -1.082 , 0 , 0.293 , -0.347 s6 decomposition =[]T In [7], David Taubman proposed EBCOT (Embedded s7 -0.058, -0.306 , -0.382 , 0.270 , 0.531 , 0.108 , 0 , 0.490 T Block Coding with Optimized Truncation) algorithm, s =[]0.272 , -1.471 , -0.978 , -0.016 , 1.803 , 1.162 , -1.318 , 0 8 which became the coding scheme kernel of JPEG The corresponding left (row) and right (column) 2000, the new generation image compression standard. The algorithm supports many wavelet permutation matrix P and P are: L R decomposition forms, partitions the subbands into a 00000010 00000100 collection of relatively small code-blocks after 00010000 00000001 wavelet decomposition, and encodes each code-block 00000001 10000000 nearly independently. One of its advantages is that it P = 00000100 = 00001000 L 00001000 PR 00100000 is independent to decomposition forms. We apply the 00100000 01000000 first coefficient rearrangement method in Section 1.2 10000000 00010000 01000000 to encode the integer DCT coefficients by EBCOT. 00000010 The simulation results are shown in Section 4. 2.2 Rearrangement of transform coefficients 3.2 Encoding algorithms with tree Having transformed an image, we can encode decomposition the transform coefficients with some wavelet-based In [5], Shapiro presented the well-known EZW coding schemes, such as SPIHT and EBCOT. In algorithm. An then, Said and Pearlman presented the order to apply these coding schemes we rearrange the more effective SPIHT algorithm. The main coefficients to take full advantage of these schemes. contribution of EZW is zerotree quantization of We adopt two methods: wavelet coefficients, which works by efficiently First, we regard each sample in an 8x8 block as predicting the children nodes based on one frequency coefficient, and then collect the significance/insignificance of their parent. An coefficients of the same frequency from all the blocks embedded zerotree quantizer refines each input according to the block order (figure 2).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us