GPW (GAPW) Electronic Structure Calculations

GPW (GAPW) Electronic Structure Calculations

4th CP2K tutorial August 31st -September 4th, Zurich GPW (GAPW) electronic structure calculations Marcella Iannuzzi Department of Chemistry, University of Zurich http://www.cp2k.org Outline Density Functional Theory and the KS formalism Gaussian and Plane Wave method (GPW) Basis sets and pseudo potentials Gaussian Augmented Plane Wave method (GAPW) 2 DFT Why DFT? Explicit inclusion of electronic structure Predicable accuracy (unlike empirical approaches, parameter free) Knowledge of electronic structure gives access to evaluation of many observables Better scaling compared to many quantum chemistry approaches Achievable improvements: development of algorithms and functionals large systems, condensed matter, environment effects, first principle MD 3 Hohenberg-Kohn theorems Motivation Density functional theory History Theorem I Bloch theorem / supercells Kohn-Sham method History of DFT — II Given a potential, one obtains the wave functions via Schrödinger equation Vext(r, R) H(r, R)=T (r)+Vext(r, R)+Vee(r) ) Walter Kohn H(r, R) (r, R)=E(R) (r, R) Walter Kohn DFT essentials CECAM NMR/EPR tutorial 2013 5 / 37 The density is the probability distribution of the wave functions n(r) V (r, R) , ext the potential and hence also the total energy are unique functional of the electronic density n(r) 4 HK Total energy Theorem II: The total energy is variational E[n] E[n ] ≥ GS Etot[n]=Ekin[n]+Eext[n]+EH[n]+Exc[n] Ekin QM kinetic energy of electron (TF) Eext energy due to external potential EH classical Hartree repulsion Exc non classical Coulomb energy: el. correlation 5 Kohn-Sham: non-interacting electrons Electronic density 2 n(r)= fi i(r) | | no repulsion i X Kinetic energy of non interacting electrons 1 T [n]= f (r) 2 (r) s i i | − 2r | i i X ⌧ Electronic interaction with the external potential ZI Eext[n]= n(r)Vext(r)dr Vext(r)= r − r RI Z XI | − | 1 Exact solution s = det [ 1 2 3... N ] pN! 6 KS energy functional Classical e-e repulsion 1 n(r)n(r0) 1 J[n]= drdr0 = n(r)V (r)dr 2 r r 2 H Zr Zr0 | − 0| Zr Kohn-Sham functional EKS[n]=Ts[n]+Eext[n]+J[n]+EXC[n] E [n]=E [n] T [n]+E [n] J[n] XC kin − s ee − non-classical︸ part 7 KS Equations Orthonormality constraint ⌦ [ ]=E [n] ✏ ⇤(r) (r)dr KS i KS − ij i j ij X Z Lagrange︸ multipliers δ⌦ [ ] Variational search in the space of orbitals KS i =0 i⇤ 1 H = 2 + V = ✏ KS i −2r KS i ij j ij X VKS(r)=Vext(r)+VH(r)+VXC(r) 8 KS Equations !ij diagonal 1 2 + V (r) (r)=✏ (r) −2r KS i i i KS equations looking like Schrödinger equations coupled and highly non linear Self consistent solution required ! and ψ are help variables KS scheme in principle exact (Exc?) 9 Self-consistency SCF Method Generate a starting density ⇒ ninit Input 3D Coordinates init Generate the KS potential ⇒ VKS of atomic nuclei Solve the KS equations ⇒ , ψ ! Initial Guess Molecular Orbitals Fock Matrix (1-electron vectors) Calculation 1 Calculate the new density ⇒ n 1 New KS potential ⇒ VKS Fock Matrix Diagonalization New orbitals and energies ⇒ !1 , ψ Calculate 2 Properties Yes SCF No New density ⇒ n Converged? End ….. until self-consistency10 to required precision Basis Set Representation KS matrix formulation when the wavefunction is expanded into a basis System size {Nel, M}, P [MxM], C [MxN] ⇥i(r)= Cαiφα(r) α Variational n(r)= fiCαiC⇥iφα(r)φ⇥(r)= P⇥φα(r)φ⇥(r) principle i ⇥ ⇥ Constrained minimisation P = PSP problem KS total energy E[ ψ ]=T [ ψ ]+Eext[n]+EH[n]+EXC[n]+EII { i} { i} Matrix formulation of the KS equations H xc K(C)C = T(C)+Vext(C)+E (C)+E (C)=SCε 11 Critical Tasks Construction of the Kohn-Sham matrix Hartree potential Introduction Energy minimization and sparseness function XC potential Time reversible BOMD Summary HF/exact exchange Why are (N) methods so important? O Fast and robust minimisation of theWith energy conventional SCF methods, hardware improvements bring functional only small gains in capability due to the steep scaling of computational time with system size, N. Efficient calculation of the density matrix and construction of the MOs (C) O(N) scaling in basis set size Big systems: biomolecules, interfaces, material science 1000+ atoms Long time scale: 1 ps = 1000 MD steps, processes several ps a day 12 Valéry Weber Classes of Basis Sets Extended basis sets, PW : condensed matter Localised basis sets centred at atomic positions, GTO Idea of GPW: auxiliary basis set to represent the density Mixed (GTO+PW) to take best of two worlds, GPW: over-completeness Augmented basis set, GAPW: separated hard and soft density domains 13 GPW Ingredients linear scaling KS matrix computation for GTO Gaussian basis sets (many terms analytic) 2 mx my mz ↵mr ⇥i(r)= Cαiφα(r) φ↵(r)= dm↵gm(r) gm(r)=x y z e− α m X Pseudo potentials Plane waves auxiliary basis for Coulomb integrals Regular grids and FFT for the density Sparse matrices (KS and P) Efficient screening G. Lippert et al, Molecular Physics, 92, 477, 1997 J. VandeVondele et al, Comp. Phys. Comm.,167 (2), 103, 2005 14 Gaussian Basis Set Localised, atom-position dependent GTO basis ϕµ(r)= dmµgm(r) m CP2K: Ab initio Molecular Dynamics Simulations Towards Linear Scaling HF/Exact Exchange Summary Acknowledgment Expansion of the density using the density matrix Sparse Matrices n(r)= Pµν ϕµ(r)ϕν∗(r) µν Gaussian basis: • Operator matricesOperator are rather matrices sparse are sparse The sparsity of H and S Sαβ=∫ϕα(r)ϕβ (r)dr Sµ⌫ = 'µ(r)'⌫ (r)dr H αβ=∫ ϕα (r)v(r)ϕβ (r)dr r ϕ (r) Z ϕα ( ) β The sparsity pattern of S and H depends on the basis and the spatial location of the atoms, but not on theH µchemical⌫ = properties'µ(r)V ( ofr) the'⌫ (r)dr system in GGAZ DFT. Sαβ HIV-1 Protease-DMP323 complex in solution (3200 atoms) 15 • Orbital matrices are invariant under unitary transformation The overlap (integral of the product) rapidly decays with the spatial separation of the basis Chemical localization: Boys, Edminston-Rudenberg, etc. functions. Mathematical localization Analytic Integrals Cartesian Gaussian n n n η(r R)2 g(r, n, η, R)=(x R ) x (y R ) y (z R ) z e− − − x − y − z Differential relations @ @ @ n)=2⌘ n + 1i) ni n 1i) n)= n) @Ri | | − | − @Ri | −@ri | Obara-Saika recursion relations (0 (r) 0 ) (a + 1i (r) b) a|O | b |O | Obara and Saika JCP 84 (1986), 3963 16 OS Recursion relations Invariance of integrals @ (a (r) b)=0 @ri |O | Shift of angular momentum (a (r) b + 1 )=(a + 1 (r) b)+(A B )(a (r) b) |O | i i|O | i − i |O | Overlap ⇡ 3/2 ↵ (0 0 )= exp[ ⇠(A B)2] ⇠ = a| b ↵ + β − − ↵ + β ✓ ◆ 1 (a + 1 b)=(P A )(a b)+ [n (a 1 b)+n (a b 1 )] i| i − i | 2(↵ + β) ia − i| ib | − i ↵A + βB P = ↵ + β 17 Basis Set library GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS O 6-31Gx 6-31G* O4 SZV-MOLOPT-GTH O SZV-GTH SZV-MOLOPT-GTH-q6 1 0 10 6 1 2 0 1 7 1 1 5484.67170000 2 0 1 4 1 1 0.00183110 O 6-311++G3df3pd 6-311++G(3df,3pd) 12.015954705512 -0.060190841200 0.036543638800 825.23495000 8.3043855492 0.01395010 0.1510165999 -0.0995679273 9 5.108150287385 -0.129597923300 0.120927648700 188.04696000 2.4579484191 0.06844510 -0.0393195364 -0.3011422449 1 0 0 6 1 2.048398039874 0.118175889400 0.251093670300 52.96450000 0.23271430 8588.50000000 0.00189515 0.832381575582 0.7597373434 0.462964485000 -0.6971724029 0.352639910300 -0.4750857083 16.89757000 0.47019300 1297.23000000 0.01438590 0.352316246455 0.2136388632 0.450353782600 -0.3841133622 0.294708645200 -0.3798777957 5.79963530 0.35852090 299.29600000 0.07073200 #0.142977330880 0.092715833600 0.173039869300 1 0 1 3 1 1 87.37710000 0.24000100 O0.046760918300 DZVP-GTH -0.000255945800 0.009726110600 15.53961600 -0.11077750 0.07087430 25.67890000 0.59479700 # 23.59993360 -0.14802630 0.33975280 3.74004000 0.28080200 O DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q6 21.01376180 0 1 4 2 2 1.13076700 0.72715860 1 0 1 3 1 1 1 1 0 1 1 8.3043855492 1 1 0.1510165999 0.0000000000 -0.0995679273 0.0000000000 42.11750000 0.11388900 0.03651140 2 0 2 7 2 2 1 0.27000580 2.4579484191 1.00000000 -0.0393195364 1.00000000 0.0000000000 -0.3011422449 0.0000000000 9.62837000 0.92081100 0.23715300 12.015954705512 -0.060190841200 0.065738617900 0.036543638800 -0.034210557400 0.014807054400 1 2 2 1 0.7597373434 1 -0.6971724029 0.0000000000 -0.4750857083 0.0000000000 2.85332000 -0.00327447 0.81970200 5.108150287385 -0.129597923300 0.110885902200 0.120927648700 -0.120619770900 0.068186159300 0.80000000 1.00000000 1 0 1 1 1 1 2.048398039874 0.2136388632 0.118175889400 -0.3841133622 -0.053732406400 1.0000000000 0.251093670300 -0.3798777957 -0.213719464600 1.0000000000 0.290576499200 # 0.90566100 1.00000000 1.00000000 0.832381575582 3 2 2 1 1 0.462964485000 -0.572670666200 0.352639910300 -0.473674858400 1.063344189500 O 6-31Gxx 6-31G** 1 0 1 1 1 1 0.352316246455 1.1850000000 0.450353782600 1.0000000000 0.186760006700 0.294708645200 0.484848376400 0.307656114200 4 0.25561100 1.00000000 1.00000000 #0.142977330880 0.092715833600 0.387201458600 0.173039869300 0.717465919700 0.318346834400 1 0 0 6 1 1 2 2 1 1 0.046760918300 -0.000255945800 0.003825849600 0.009726110600 0.032498979400 -0.005771736600 O5484.67170000 TZVP-GTH 0.00183110 5.16000000 1.00000000 # 825.23495000 2 0.01395010 1 2 2 1 1 O TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q6 188.04696000 2 0 1 5 3 3 0.06844510 1.29200000 1.00000000 1 52.96450000 10.2674419938 0.23271430 0.0989598460 0.0000000000 0.0000000000 -0.0595856940 1 2 2 1 10.0000000000 0.0000000000 2 0 2 7 3 3 1 16.89757000 3.7480495696 0.47019300 0.1041178339 0.0000000000 0.0000000000 -0.1875649045 0.32250000 0.0000000000 1.00000000 0.0000000000 12.015954705512 -0.060190841200 0.065738617900 0.041006765400 0.036543638800 -0.034210557400 -0.000592640200 0.014807054400

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    53 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us