Probability Statistics Economists

Probability Statistics Economists

PROBABILITY AND STATISTICS FOR ECONOMISTS BRUCE E. HANSEN Contents Preface x Acknowledgements xi Mathematical Preparation xii Notation xiii 1 Basic Probability Theory 1 1.1 Introduction . 1 1.2 Outcomes and Events . 1 1.3 Probability Function . 3 1.4 Properties of the Probability Function . 4 1.5 Equally-Likely Outcomes . 5 1.6 Joint Events . 5 1.7 Conditional Probability . 6 1.8 Independence . 7 1.9 Law of Total Probability . 9 1.10 Bayes Rule . 10 1.11 Permutations and Combinations . 11 1.12 Sampling With and Without Replacement . 13 1.13 Poker Hands . 14 1.14 Sigma Fields* . 16 1.15 Technical Proofs* . 17 1.16 Exercises . 18 2 Random Variables 22 2.1 Introduction . 22 2.2 Random Variables . 22 2.3 Discrete Random Variables . 22 2.4 Transformations . 24 2.5 Expectation . 25 2.6 Finiteness of Expectations . 26 2.7 Distribution Function . 28 2.8 Continuous Random Variables . 29 2.9 Quantiles . 31 2.10 Density Functions . 31 2.11 Transformations of Continuous Random Variables . 34 2.12 Non-Monotonic Transformations . 36 ii CONTENTS iii 2.13 Expectation of Continuous Random Variables . 37 2.14 Finiteness of Expectations . 39 2.15 Unifying Notation . 39 2.16 Mean and Variance . 40 2.17 Moments . 42 2.18 Jensen’s Inequality . 42 2.19 Applications of Jensen’s Inequality* . 43 2.20 Symmetric Distributions . 45 2.21 Truncated Distributions . 46 2.22 Censored Distributions . 47 2.23 Moment Generating Function . 48 2.24 Cumulants . 50 2.25 Characteristic Function . 51 2.26 Expectation: Mathematical Details* . 52 2.27 Exercises . 52 3 Parametric Distributions 56 3.1 Introduction . 56 3.2 Bernoulli Distribution . 56 3.3 Rademacher Distribution . 57 3.4 Binomial Distribution . 57 3.5 Multinomial Distribution . 58 3.6 Poisson Distribution . 58 3.7 Negative Binomial Distribution . 59 3.8 Uniform Distribution . 59 3.9 Exponential Distribution . 59 3.10 Double Exponential Distribution . 60 3.11 Generalized Exponential Distribution . 60 3.12 Normal Distribution . 61 3.13 Cauchy Distribution . 61 3.14 Student t Distribution . 62 3.15 Logistic Distribution . 62 3.16 Chi-Square Distribution . 63 3.17 Gamma Distribution . 63 3.18 F Distribution . 64 3.19 Non-Central Chi-Square . 64 3.20 Beta Distribution . 65 3.21 Pareto Distribution . 65 3.22 Lognormal Distribution . 66 3.23 Weibull Distribution . 66 3.24 Extreme Value Distribution . 67 3.25 Mixtures of Normals . 68 3.26 Technical Proofs* . 70 3.27 Exercises . 71 4 Multivariate Distributions 74 4.1 Introduction . 74 4.2 Bivariate Random Variables . 75 CONTENTS iv 4.3 Bivariate Distribution Functions . 76 4.4 Probability Mass Function . 78 4.5 Probability Density Function . 79 4.6 Marginal Distribution . 81 4.7 Bivariate Expectation . 82 4.8 Conditional Distribution for Discrete X ............................. 84 4.9 Conditional Distribution for Continuous X ........................... 85 4.10 Visualizing Conditional Densities . 87 4.11 Independence . 89 4.12 Covariance and Correlation . 91 4.13 Cauchy-Schwarz . 93 4.14 Conditional Expectation . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    399 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us