Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics

Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics

NASA Technical Memorandum 110394 Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics Eugene L. Tu August 1996 National Aeronautics and Space Administration NASATechnicalMemorandum110394 Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics Eugene L. Tu, Ames Research Center, Moffett Field, California August 1996 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-!000 TABLE OF CONTENTS Page Nomenclature ............................................................................. xv Summary. .................................................................................. 1 Chapter 1 Introduction ........................................... ......................... 3 1.1 Motivation ...................................................................... 3 1.2 Background ..................................................................... 4 1.3 Previous Studies ................................................................ 4 1.4 Objectives ...................................................................... 6 1.5 Geometry ....................................................................... 6 Chapter 2 Computational Modeling ....................................................... 9 2.1 Numerical Method .............................................................. 9 2.1.1 Turbulence modeling .................................................. 10 2.1.2 Code performance ..................................................... 10 2.2 Geometry Modeling ............................................................ 11 2.3 Static Grid Generation ......................................................... 12 2.3.1 Surface grids .......................................................... 12 2.3.2 Flowfield grids ........................................................ 12 2.4 Dynamic Grid Generation ...................................................... 14 2.5 Boundary Conditions ........................................................... 14 2.6 Zonal Interfacing ............................................................... 15 2.7 Dynamic Stability Analysis ..................................................... 16 Chapter 3 Effect of Canard on Steady-State Aerodynamics ............................... 31 3.1 Experimental Validation: Coplanar Canard ..................................... 31 3.1.1 Baseline grid .......................................................... 31 3.1.2 Refined grid ........................................................... 33 3.2 Aerodynamic Performance ...................................................... 34 3.2.1 Canard vertical position ............................................... 34 3.2.2 Canard deflection angle ............................................... 35 iii 3.3 Canard-WingVortexInteraction............................................... 36 3.3.1 Coplanarcanard...................................................... 36 3.3.2 Canardverticalposition............................................... 37 3.3.3 Canarddeflectionangle............................................... 39 3.4 Effectof Canardon Wing \,%rtexBreakdown................................... 40 Chapter4 Effectof Fixed Canardon UnsteadyAerodynamics............................ 69 4.1 Pitch-Up RampMotion ........................................................ 70 4.1.1 Aerodynamicperformance............................................. 71 4.1.2 Spatialand temporalconvergence..................................... 71 4.1.3 Canard-wingvortexinteraction........................................ 72 4.2 Pitch Oscillation............................................................... 73 4.3 DynamicStabilit3............................................................... 74 4.3.1 Effectof canard....................................................... 75 4.3.2 Reducedfrequency.................................................... 95 Chapter5 UnsteadyAerodynamicsof MovingCanards................................... 95 5.1 CanardPitch-UpRampMotion................................................ 95 5.1.1 Unsteadylift andpitchingmoment.................................... 96 5.1.2 Canard-wingvortex interaction........................................ 98 ,5.2 CanardPitch Oscillation....................................................... 98 5.2.1 Unsteadylift andpitchingmoment.................................... 99 5.2.2 Canardand wingvortexstructures................................... 127 Chapter6 Conclusions.................................................................. 127 6.1 Validationof the Computationalblethod...................................... 127 6.2 Canard-Wing-BodySteadyFlowfield.......................................... 128 6.3 Canard-Wing-BodyUnsteadyFlowfield........................................ 129 6.4 Recommendationsfor FutureStudies.......................................... 135 AppendixA GoverningEquations....................................................... 131 AppendixB NumericalAlgorRhm....................................................... 137 AppendixC Turbulence Modeling ....................................................... 143 References 147 iv List of Tables Page 2.1 Surface and flowfield grid data for coplanar, vertical-offset and deflected canard configurations .................................................. 18 List of Figures Page 1.1 Sketch of the leading-edgevortexstructureof a canard or wing ................... 7 1.2 Crossflow plane sketch of the leading-edge vortex ................................. 7 1.3 Schematic of the typical steady-state canard-wing vortex interaction for a configuration at moderate angles of attack ............................ 8 1.4 Close-coupled canard-wing-body geometry (pitch axis. moment center, and canard vertical locations shown) ....................................... 8 2.1 Schematic diagram of the grid generation procedure for static canard configurations with various canard vertical positions and deflections ....... 19 2.2 Baseline surface grid for the wing-body configuration with and without an undeflected mid-canard ................................................ 20 2.3 Refined surface grid for the wing-body configuration with and without an undeflected mid-canard ................................................ 20 2.4 Schematic of the procedure for generating a vertical-offset canard configuration from a baseline undeflected mid-canard configuration ........ 21 2.5 Perspective view of the surface grid for wing-body configuration with a high-canard (y/g = 0.185) .......................................... 21 2.6 Schematic of the procedure for generating a deflected canard configuration from a baseline undeflected mid-canard configuration ........ 22 2.7 Perspective view of the surface grid for wing-body configuration with a deflected canard (_c = 10 deg) ......................................... 22 2.8 Flowfield grid topology and expanded near-body grid for the undeflected mid-canard configuration ...................................... 23 2.9 Comparison of the baseline and refined near-body flowfield grids for the undeflected mid-canard configuration .................................. 24 2.10 Algebraic redistribution of the flowfield grid ................................... 25 2.11 Flowfield grid at the mismatched interface surface for the high-canard configuration ............................................................. 26 2.12 Flowfield grid at the mismatched interface surface for the deflected canard configuration ...................................................... 26 2.13 Schematic illustrating the integration of dynamic grid generation and zonal interface computation into the time-iterative solution 27 process ................................................................... 2.14 Types of velocity boundary conditions at the surfaces of the canard. wing and body ............................................................ 28 2.15 Schematic illustrating the interfacing of two adjacent zones .................... 28 2.16 Example of a local search procedure for improved efficiency in dynamic zonal interface computations .................................. 29 3.1 Comparison of computed and experimental steady-state surface pressure coefficients for the baseline grid with and without mid-canard. M_c = 0.90, a _ 4 deg, Re_ = 1.52 million ............... 41 vii 3.2 Comparisonof computedandexperimentalforcecoefficients for thebaselinegrid with andwithout mid-canard. M_ = 0.90, Ree = 1.52 million ......................................... 42 3.3 Comparison of component force coefficients for the baseline grid with and without mid-canard. (Lift and moment curves are given for shaded regions of the geometry). Moo = 0.90, Ree = 1.52 million ....................................................... 43 3.4 Comparison of baseline and refined grid surface pressure coefficients with experiment. Moc = 0.90, ct = 8.21 deg, Ree = 1.52 million ....................................................... 44 3.5 Comparison of baseline and refined grid surface pressure coefficients with experiment. 2lI_ = 0.90, a = 12.38 deg, Ree = 1.52 million ....................................................... 44 Comparison of baseline and refined grid force coefficients with experiment. M,c = 0.90, Ree = 1.52 million ............................ 45 Comparison of computed and experimental surface pressure coefficients for the refined grid with and without mid-canard. 5/c_ = 0.90, a _ 12 deg, Rec = 1.52 million ..........................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    168 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us