Coll041-Endmatter.Pdf

Coll041-Endmatter.Pdf

http://dx.doi.org/10.1090/coll/041 AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME 41 A FORMALIZATION OF SET THEORY WITHOUT VARIABLES BY ALFRED TARSKI and STEVEN GIVANT AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1985 Mathematics Subject Classification. Primar y 03B; Secondary 03B30 , 03C05, 03E30, 03G15. Library o f Congres s Cataloging-in-Publicatio n Dat a Tarski, Alfred . A formalization o f se t theor y withou t variables . (Colloquium publications , ISS N 0065-9258; v. 41) Bibliography: p. Includes indexes. 1. Se t theory. 2 . Logic , Symboli c an d mathematical . I . Givant, Steve n R . II. Title. III. Series: Colloquium publications (American Mathematical Society) ; v. 41. QA248.T37 198 7 511.3'2 2 86-2216 8 ISBN 0-8218-1041-3 (alk . paper ) Copyright © 198 7 b y th e America n Mathematica l Societ y Reprinted wit h correction s 198 8 All rights reserve d excep t thos e grante d t o th e Unite d State s Governmen t This boo k ma y no t b e reproduce d i n an y for m withou t th e permissio n o f th e publishe r The pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . @ Contents Section interdependenc e diagram s vii Preface x i Chapter 1 . Th e Formalis m £ o f Predicate Logi c 1 1.1. Preliminarie s 1 1.2. Symbol s an d expression s o f £ 4 1.3. Derivabilit y i n £ 7 1.4. Semantica l notion s o f £ 1 1 1.5. First-orde r formalism s 1 4 1.6. Formalism s an d system s 1 6 Chapter 2 . Th e Formalis m £+, a Definitional Extensio n o f £ 2 3 2.1. Symbol s an d expression s o f L + 2 3 2.2. Derivabilit y an d semantica l notion s o f L + 2 5 2.3. Th e equipollenc e o f L + an d L 2 7 2.4. Th e equipollenc e o f a system wit h a n extensio n 3 0 2.5. Th e equipollenc e o f two systems relativ e t o a commo n extension 4 1 Chapter 3 . Th e Formalis m L x withou t Variable s an d th e Problem o f Its Equipollenc e wit h £ 4 5 3.1. Syntactica l an d semantica l notion s o f £x 4 5 3.2. Schemat a o f equations derivabl e i n £x 4 8 3.3. A deduction theore m fo r £x 5 1 3.4. Th e inequipollenc e o f £x wit h £+ an d £ 5 3 3.5. Th e inequipollenc e o f extensions o f £x wit h £+ an d £ 5 6 3.6. £ x-expressibility 6 2 3.7. Th e three-variabl e formalism s £ 3 an d £+3 " 6 4 3.8. Th e equipollenc e o f £3 an d £3 " 7 2 iV CONTENTS 3.9. Th e equipollenc e o f £x an d £^ 7 6 3.10. Subformalism s o f £ an d £+ wit h finitely man y variable s 8 9 Chapter 4 . Th e Relativ e Equipollenc e o f £ an d £x, an d th e Formalization o f Set Theor y i n £ x 9 5 4.1. Conjugate d quasiprojection s an d sentence s QAB 9 5 4.2. System s o f conjugated quasiprojection s an d system s o f predicates PAB 10 0 4.3. Historica l remark s regardin g the translation mappin g fro m £+ t o £x 10 7 4.4. Proo f o f the main mappin g theore m fo r £x an d £+ 11 0 4.5. Th e constructio n o f equipollent Q-system s i n £x 12 4 4.6. Th e formalizabilit y o f systems o f set theor y i n £x 12 7 4.7. Problem s o f expressibility an d decidabilit y i n £x 13 5 4.8. Th e undecidabilit y o f first-order logic s with finitely man y variables, and the relativ e equipollenc e o f £3 wit h £ 14 0 Chapter 5 . Som e Improvements o f the Equipollence Result s 14 7 5.1. One-on e translatio n mapping s 14 7 5.2. Reducin g th e number o f primitive notion s o f £ x: definitionally equivalen t variant s o f £x 15 1 5.3. Eliminatin g th e symbo l 1 as a primitive notio n fro m systems o f set theor y i n £x 15 3 5.4. Eliminatin g th e symbo l = a s a primitive notio n fro m £ x: the reduce d formalis m £x 15 8 5.5. Undecidabl e subsystem s o f sentential logi c 16 5 Chapter 6 . Implication s o f the Mai n Result s fo r Semanti c an d Axiomatic Foundation s o f Set Theor y 16 9 6.1. Denotatio n an d truth i n £x 16 9 6.2. Th e denotabilit y o f first-order definabl e relation s i n O-structures 17 0 6.3. Th e £ x-expressibility o f certain relativize d sentence s 17 4 6.4. Th e finite axiomatizabilit y o f predicative system s o f set theory admittin g prope r classe s 17 7 6.5. Th e finite axiomatizabilit y o f predicative system s o f set theory excludin g proper classe s 18 7 Chapter 7 . Extensio n o f Results to Arbitrary Formalism s o f Predicat e Logic, and Application s t o the Formalizatio n o f the Arithmetic s o f Natural an d Rea l Numbers 19 1 7.1. Extensio n o f equipollence result s to Q-system s i n first-order formalism s wit h just binar y relatio n symbol s 19 1 CONTENTS v 7.2. Extensio n o f equipollence result s t o wea k Q-system s i n arbitrary first-orde r formalism s 20 0 7.3. Th e equipollenc e o f weak Q-system s wit h finit e variabl e subsystems 20 8 7.4. Compariso n o f equipollence result s fo r stron g an d wea k Q-systems 21 4 7.5. Th e formalizabilit y o f the arithmeti c o f natural number s in £x 21 5 7.6. Th e formalizabilit y o f Peano arithmeti c i n £x, an d th e definitional equivalenc e o f Peano arithmeti c wit h a syste m of set theor y 22 2 7.7. Th e formalizabilit y o f the arithmeti c o f real numbers i n £x 22 6 7.8. Remark s o n first-order formalism s wit h limite d vocabularies 22 9 Chapter 8 . Application s t o Relation Algebra s an d t o Varietie s o f Algebras 23 1 8.1. Equationa l formalism s 23 1 8.2. Relatio n algebra s 23 5 8.3. Represen t able relation algebra s 23 9 8.4. Q-relatio n algebra s 24 2 8.5. Decisio n problem s fo r varietie s o f relation algebra s 25 1 8.6. Decisio n problem s fo r varietie s o f groupoids 25 8 8.7. Historica l remark s regardin g the decisio n problem s 26 8 Bibliography 27 3 Indices Index o f Symbol s 28 3 Index o f Names 29 7 Index o f Subject s 30 1 Index o f Numbered Item s 31 7 This page intentionally left blank Explanation o f section interdependenc e diagram s The diagram s o n the next tw o pages indicat e th e essentia l interdependencie s of th e variou s section s o f thi s book . I n general , th e dependenc e o f a sectio n on earlie r section s i s determine d b y followin g upward s th e line s leadin g t o th e section's box. Fo r example, Section 4.8 depends on Sections 3.8-3.9 (an d possibly on section s abov e them , suc h a s 3.7 , 3.1-3.3 , 2.1-2.3 , an d 1.2-1.4) , a s wel l a s on Section s 4.1-4. 4 (an d possibl y o n section s abov e them) . A smal l par t o f i t also depends o n part o f Section 3.10 ; this mor e limite d dependenc e i s indicate d by a dotte d line . Fo r a secon d example , Sectio n 4. 7 depend s o n 3. 6 (whic h i n turn depend s o n earlie r sections) , a s wel l a s o n 4. 6 (an d possibl y o n som e o f the section s abov e it , suc h a s 4.1-4.5). A s a final example , Sectio n 6.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    70 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us