The symmetries of image formation by scattering. I. Theoretical framework Dimitrios Giannakis,1 Peter Schwander,2 and Abbas Ourmazd2,∗ 1Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York 10012, USA 2Department of Physics, University of Wisconsin Milwaukee, 1900 E Kenwood Blvd, Milwaukee, Wisconsin 53211, USA ∗[email protected] Abstract: We perceive the world through images formed by scatte- ring. The ability to interpret scattering data mathematically has opened to our scrutiny the constituents of matter, the building blocks of life, and the remotest corners of the universe. Here, we present an approach to image formation based on the symmetry properties of operations in three-dimensional space. Augmented with graph-theoretic means, this approach can recover the three-dimensional structure of objects from random snapshots of unknown orientation at four orders of magnitude higher complexity than previously demonstrated. This is critical for the burgeoning field of structure recovery by X-ray Free Electron Lasers, as well as the more established electron microscopic techniques, including cryo-electron microscopy of biological systems. In a subsequent paper, we demonstrate the recovery of structure and dynamics from experimental, ultralow-signal random sightings of systems with X-rays, electrons, and photons, with no orientational or timing information. © 2012 Optical Society of America OCIS codes: (290.5825) Scattering theory; (290.5840) Scattering, molecules; (290.3200) In- verse scattering; (140.2600) Free-electron lasers (FELs); (180.6900) Three-dimensional mi- croscopy. References and links 1. W. A. Freiwald and D. Y. Tsao, “Functional compartmentalization and viewpoint generalization within the macaque face-processing system,” Science 330, 845–851 (2010). 2. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jonsson,¨ D. Odic,´ B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J. Claverie, C. Bostedt, J. D. Bozek, S. Boutet, A. A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K. O. Hodgson, M. J. Bogan, C. Y. Hampton, R. G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J. C. H. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R. B. Doak, S. Marchesini, S. P. Hau-Riege, M. Frank, R. L. Shoeman, L. Lomb, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Homke,¨ C. Reich, D. Pietschner, G. Weidenspointner, L. Struder,¨ G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. Kuhnel,¨ R. Andritschke, C. Schroter,¨ F. Kras- niqi, M. Bott, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nils- son, H. N. Chapman, and J. Hajdu, “Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature 470, 78–81 (2011). 3. J. Frank, “Single-particle imaging of macromolecules by cryo-electron microscopy,” Annu. Rev. Biophys. Biomolec. Struct. 31, 303–319 (2002). 4. N. Fischer, A. L. Konevega, W. Wintermeyer, M. V. Rodnina, and H. Stark, “Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.” Nature 466, 329–333 (2010). #162794 - $15.00 USD Received 9 Feb 2012; revised 11 May 2012; accepted 16 May 2012; published 23 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 12799 5. J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290, 2319–2323 (2000). 6. S. T. Roweis and S. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science 290, 2323–2326 (2000). 7. M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput. 13, 1373–1396 (2003). 8. D. L. Donoho and C. Grimes, “Hessian eigenmaps: New locally linear embedding techniques for high- dimensional data,” Proc. Natl. Acad. Sci. U.S.A. 100, 5591–5596 (2003). 9. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker, “Geometric diffusions as a tool for harmonic analysis and structure definition on data,” Proc. Natl. Acad. Sci. U.S.A. 102, 7426–7431 (2005). 10. R. R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmon. Anal. 21, 5–30 (2006). 11. R. R. Coifman, Y. Shkolnisky, F. J. Sigworth, and A. Singer, “Reference free structure determination through eigenvectors of center of mass operators,” Appl. Comput. Harmon. Anal. 28, 296–312 (2010). 12. A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti, and I. G. Kevrekidis, “Systematic determination of order parameters for chain dynamics using diffusion maps,” Proc. Natl. Acad. Sci. U.S.A. 107, 13597–13602 (2010). 13. A. Singer, R. R. Coifman, F. J. Sigworth, D. W. Chester, and Y. Shkolnisky, “Detecting consistent common lines in cryo-EM by voting,” J. Struct. Biol. 169, 312–322 (2010). 14. http://www.youtube.com/watch?v=uat-1voeP3o. 15. P. Schwander, D. Giannakis, C. H. Yoon, and A. Ourmazd, “The symmetries of image formation by scattering. II. Applications,” Opt. Express (2012). (submitted). 16. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972). 17. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). 18. F. Oszlanyi´ and A. Suto,¨ “Ab initio structure solution by charge flipping,” Acta Crystallogr. 60, 134–141 (2004). 19. F. Natterer, The Mathematics of Computerized Tomography (SIAM, 2001). 20. J. Girard, G. Maire, H. Giovannini, A. Talneau, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Nanometric resolution using far-field optical tomographic microscopy in the multiple scattering regime,” Phys. Rev. A 82, 061801(R) (2010). 21. A. Sentenac, O. Haeberle, and K. Belkebir, “Introduction,” J. Mod. Opt. 57, 685 (2010). 22. R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd, “Structure from fleeting illumination of faint spinning objects in flight,” Nat. Phys. 5, 64–67 (2008). 23. N. T. D. Loh and V. Elser, “Reconstruction algorithm for single-particle diffraction imaging experiments,” Phys. Rev. E 80, 026705–1–026705–20 (2009). 24. P. Schwander, R. Fung, G. N. Phillips, and A. Ourmazd, “Mapping the conformations of biological assemblies,” New J. Phys. 12, 1–15 (2010). 25. S. H. W. Scheres, H. Gao, M. Valle, G. T. Herman, P. P. B. Eggermont, J. Frank, and J.-M. Carazo, “Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization,” Nat. Methods 4, 27–29 (2007). 26. L. Younes, P. W. Michor, J. Shah, and D. Mumford, “A metric on shape space with explicit geodesics,” Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. Lincei, Mat. Appl. 9, 25–57 (2008). 27. T. Lin, H. Zha, and S. Lee, “Riemannian manifold learning fo rnonlinear dimensionality reduction,” in ECCV Part I, LNCS, , A. Leondardis, H. Bischof, and A. Pinz, eds. (Springer-Verlag, 2006), 44–55. 28. B. Scholkopf,¨ B. Smola, and K.-R. Muller,¨ “Nonlinear component analysis as an kernel eigenvalue problem,” Neural Comput. 10, 1299–1319 (1998). 29. C. M. Bishop, M. Svensen, and C. K. I. Williams, “GTM: The generative topographic mapping,” Neural Comput. 463, 379–383 (1998). 30. B. Moths and A. Ourmazd, “Bayesian algorithms for recovering structure from single-particle diffraction snap- shots of unknown orientation: a comparison,” Acta Crystallogr. A67 (2011). 31. M. Balasubramanian and E. L. Schwartz, “The Isomap algorithm and topological stability,” Science 295, 5552 (2002). 32. R. Coifman, Y. Shkolnisky, F. Sigworth, and A. Singer, “Graph Laplacian tomography from unknown random projections,” IEEE Trans. Image Process. 17, 1891–1899 (2008). 33. B. F. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, 1980). 34. S. Lang, Introduction to Differentiable Manifolds (Springer-Verlag, 2002). 35. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, 1959). 36. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics (Addison Wesley, 1981). 37. G. S. Chirikjian and A. B. Kyatkin, Engineering Applications of Noncummutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups (CRC Press, 2000). 38. B. L. Hu, “Scalar waves in the mixmaster universe. I. The Helmholtz equation in a fixed background,” Phys. Rev. #162794 - $15.00 USD Received 9 Feb 2012; revised 11 May 2012; accepted 16 May 2012; published 23 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 12800 D 8, 1048–1060 (1973). 39. A. H. Taub, “Empty space-times admitting a three parameter group of motions,” Ann. Math. 53, 472–490 (1951). 40. J. M. Cowley, Diffraction Physics, 3rd ed. (North Holland, 1995). 41. A. Arvanitoyeorgos, An Introduction to Lie Groups and the Geometry of Homogeneous Spaces (American Math- ematical Society, 2003). 42. J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality (Princeton University Press, 2002). 43. S. Lang, Fundamentals of Differential Geometry (Springer-Verlag, 1998). 44. A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Numerical Geometry of Non-Rigid Shapes (Springer, 2007). 45. T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology,” J. Stat. Phys. 65, 579–616 (1991). 46. R. M. Wald, General Relativity (The University of Chicago Press, 1984). 47. P. H. Berard,´ Spectral Geometry: Direct and Inverse Problems, (Springer-Verlag, 1989). 48. S. Rosenberg, The Laplacian on a Riemannian Manifold (Cambridge University Press, 1997). 49. N. J. Vilenkin, Special Functions and the Theory of Group Representations, (American Mathematical Society, 1968). 50. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, 1988).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages28 Page
-
File Size-