Operator Algebras and Noncommutative Geometry

Operator Algebras and Noncommutative Geometry

Operator Algebras and Noncommutative Geometry David E Evans Cardiff University LMS Graduate Meeting 15 November 2013 1 / 24 Overview Gelfand Theorem operator algebras dimension rotation algebra and orbifolds Stone-von Neumann theorem 2 / 24 characters χx : A ! C , f ! f (x) Hom(A; C) Irred Rep (A; B(H)) Spectrum Spec(A) recover topology of [−1; 1] from C[−1:1] Algebra of continuous functions A = C[−1; 1] = continuous maps f :[−1; 1] ! C jjf jj = sup x jf (x)j 3 / 24 Irred Rep (A; B(H)) Spectrum Spec(A) recover topology of [−1; 1] from C[−1:1] Algebra of continuous functions A = C[−1; 1] = continuous maps f :[−1; 1] ! C jjf jj = sup x jf (x)j characters χx : A ! C , f ! f (x) Hom(A; C) 3 / 24 recover topology of [−1; 1] from C[−1:1] Algebra of continuous functions A = C[−1; 1] = continuous maps f :[−1; 1] ! C jjf jj = sup x jf (x)j characters χx : A ! C , f ! f (x) Hom(A; C) Irred Rep (A; B(H)) Spectrum Spec(A) 3 / 24 Algebra of continuous functions A = C[−1; 1] = continuous maps f :[−1; 1] ! C jjf jj = sup x jf (x)j characters χx : A ! C , f ! f (x) Hom(A; C) Irred Rep (A; B(H)) Spectrum Spec(A) recover topology of [−1; 1] from C[−1:1] 3 / 24 2 Represent f 2 C[−1; 1] on L (T) by multiplication operators 2 π(f ) 2 B(L (T)) (π(f )g)(x) = f (x)g(x) 2 A = C[−1; 1] ⊂ B(L (T)) Geland-Naimark Theorem If A is a Banach ∗-algebra where kT ∗T k = kT k2; T 2 A then A is a C ∗-algebra, | there exists an isometric ∗-homomorphism π : A ! B(H) for a Hilbert space H. 4 / 24 Geland-Naimark Theorem If A is a Banach ∗-algebra where kT ∗T k = kT k2; T 2 A then A is a C ∗-algebra, | there exists an isometric ∗-homomorphism π : A ! B(H) for a Hilbert space H. 2 Represent f 2 C[−1; 1] on L (T) by multiplication operators 2 π(f ) 2 B(L (T)) (π(f )g)(x) = f (x)g(x) 2 A = C[−1; 1] ⊂ B(L (T)) 4 / 24 H = H∗ 2 B(H), C ∗(H; 1) ' C(σ(H)) Spec(A) = σ(H) f (H), f 2 C(σ(H)) x ! exp(itx), U(t) = exp(itH) U(t)U(s) = U(s + t) Gelfand Theorem If A is a commutative, unital Banach ∗-algebra with kf ∗f k = kf k2, f 2 A then A ' C(Ω) for a compact Hausdorff Ω. 5 / 24 Gelfand Theorem If A is a commutative, unital Banach ∗-algebra with kf ∗f k = kf k2, f 2 A then A ' C(Ω) for a compact Hausdorff Ω. H = H∗ 2 B(H), C ∗(H; 1) ' C(σ(H)) Spec(A) = σ(H) f (H), f 2 C(σ(H)) x ! exp(itx), U(t) = exp(itH) U(t)U(s) = U(s + t) 5 / 24 A separable , Spec A = • =) A 'K(H) B = continuous maps from [−1; 1] ! M2 Spec(B) = [−1; 1] f ! f (x) noncommutative algebra points to matrices Mn representations are all multiples of x ! x Spectrum of Mn = singleton • Spectrum K(H) = • 6 / 24 B = continuous maps from [−1; 1] ! M2 Spec(B) = [−1; 1] f ! f (x) noncommutative algebra points to matrices Mn representations are all multiples of x ! x Spectrum of Mn = singleton • Spectrum K(H) = • A separable , Spec A = • =) A 'K(H) 6 / 24 noncommutative algebra points to matrices Mn representations are all multiples of x ! x Spectrum of Mn = singleton • Spectrum K(H) = • A separable , Spec A = • =) A 'K(H) B = continuous maps from [−1; 1] ! M2 Spec(B) = [−1; 1] f ! f (x) 6 / 24 Z2 action on B = C([−1; 1]; M2) 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) orbifold [−1; 1] under Z2 action x ! −x 7 / 24 Z2 action on B = C([−1; 1]; M2) 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) orbifold [−1; 1] under Z2 action x ! −x 7 / 24 Z2 action on B = C([−1; 1]; M2) 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) orbifold [−1; 1] under Z2 action x ! −x 7 / 24 Z2 action on B = C([−1; 1]; M2) 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) orbifold [−1; 1] under Z2 action x ! −x 7 / 24 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) orbifold [−1; 1] under Z2 action x ! −x Z2 action on B = C([−1; 1]; M2) 7 / 24 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) orbifold [−1; 1] under Z2 action x ! −x Z2 action on B = C([−1; 1]; M2) 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 7 / 24 Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) orbifold [−1; 1] under Z2 action x ! −x Z2 action on B = C([−1; 1]; M2) 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C 7 / 24 orbifold [−1; 1] under Z2 action x ! −x Z2 action on B = C([−1; 1]; M2) 0 1 by x ! −x and U()U where U = 1 0 f ! g(x) = Uf (−x)U 2 BZ2 ⊂ B : f (x) 2 M2; x 2 (0; 1] and f (0) = Uf (0)U i.e. f (0) 2 C Spec(BZ2 ) = ∗ BZ2 = C ([−1; 1]=Z2) 7 / 24 Iterating C ! M2 ! M4 ! M8 !···! M2n ! M2n+1 !··· Nn Nn 2 M2 ' M2n ' End( C ) Nn M2 ' M2n the Fermion algebra M2n ! M2n+2n = M2n+1 ' M2n ⊗ M2 a 0 a ! ' a ⊗ 1 0 a 8 / 24 the Fermion algebra M2n ! M2n+2n = M2n+1 ' M2n ⊗ M2 a 0 a ! ' a ⊗ 1 0 a Iterating C ! M2 ! M4 ! M8 !···! M2n ! M2n+1 !··· Nn Nn 2 M2 ' M2n ' End( C ) Nn M2 ' M2n 8 / 24 C ! M2 ! M4 ! M8 !···! M2n ! M2n+1 !··· X n Trace(a) = aii =2 a 0 a ! (1) 0 a e = e∗ = e2 : 1 2 3 dim(e) = trace(e) 2 f0; 2n ; 2n ; 2n :::; 1g ! N[1=2] K0(⊗NM2) = Z[1=2] Dimensions of Operator Algebras Projections e = e2 = e∗ in A ⊂ B(H) correspond to decompositions H = eH ⊕ eH? 9 / 24 e = e∗ = e2 : 1 2 3 dim(e) = trace(e) 2 f0; 2n ; 2n ; 2n :::; 1g ! N[1=2] K0(⊗NM2) = Z[1=2] Dimensions of Operator Algebras Projections e = e2 = e∗ in A ⊂ B(H) correspond to decompositions H = eH ⊕ eH? C ! M2 ! M4 ! M8 !···! M2n ! M2n+1 !··· X n Trace(a) = aii =2 a 0 a ! (1) 0 a 9 / 24 K0(⊗NM2) = Z[1=2] Dimensions of Operator Algebras Projections e = e2 = e∗ in A ⊂ B(H) correspond to decompositions H = eH ⊕ eH? C ! M2 ! M4 ! M8 !···! M2n ! M2n+1 !··· X n Trace(a) = aii =2 a 0 a ! (1) 0 a e = e∗ = e2 : 1 2 3 dim(e) = trace(e) 2 f0; 2n ; 2n ; 2n :::; 1g ! N[1=2] 9 / 24 Dimensions of Operator Algebras Projections e = e2 = e∗ in A ⊂ B(H) correspond to decompositions H = eH ⊕ eH? C ! M2 ! M4 ! M8 !···! M2n ! M2n+1 !··· X n Trace(a) = aii =2 a 0 a ! (1) 0 a e = e∗ = e2 : 1 2 3 dim(e) = trace(e) 2 f0; 2n ; 2n ; 2n :::; 1g ! N[1=2] K0(⊗NM2) = Z[1=2] 9 / 24 discrete rotation matrices 0 0 1 0 1 B 0 0 C B C V = B ·· C B C @ · 1 A 1 0 0 0 1 0 1 B 0 ! C B C U = B ·· C B C @ · A 0 0 !n−1 !n = 1 VUV ∗ = !U r Ver = er−1 Uer = ! er 10 / 24 −1 ∗ ∼ Ad V = V ( · )V leaves C (U) = C(T) invariant and acts by rotation through θ on the circle if θ is irrational, Aθ is simple, unique 2 cf. C(T ) when θ = 0. rotation algebra 2 multiplication and translation operators on L (T), Uh(z) = zh(z) Vh(z) = h(exp(2πiθ)z) VU = exp(2πiθ)UV ∗ Aθ = C (U; V ) VUV −1 = exp(2πiθ)U; 11 / 24 if θ is irrational, Aθ is simple, unique 2 cf.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us