Mathematics Session

Mathematics Session

Mathematics Session Cartesian Coordinate Geometry And Straight Lines Session Objectives 1. Cartesian Coordinate system and Quadrants 2. Distance formula 3. Area of a triangle 4. Collinearity of three points 5. Section formula 6. Special points in a triangle 7. Locus and equation to a locus 8. Translation of axes - shift of origin 9. Translation of axes - rotation of axes René Descartes Coordinates Y 3 Y-axis : Y’OY 2 X-axis : X’OX 1 +ve direction+ve X’ O X -4 -3 -2 -1 1 2 3 4 Origin -1 +ve direction -2 -ve direction ve directionve Y’ -3 - Coordinates Y 3 2 (2,1) Abcissa 1 X’ O X -4 -3 -2 -1 1 2 3 4 -1 Ordinate -2 (-3,-2) Y’ -3 (?,?) Coordinates Y 3 2 (2,1) Abcissa 1 X’ O X -4 -3 -2 -1 1 2 3 4 -1 Ordinate -2 (-3,-2) Y’ -3 (4,?) Coordinates Y 3 2 (2,1) Abcissa 1 X’ O X -4 -3 -2 -1 1 2 3 4 -1 Ordinate -2 (-3,-2) Y’ -3 (4,-2.5) Quadrants Y (-,+) (+,+) II I X’ O X III IV (-,-) (+,-) Y’ Quadrants Y (-,+) (+,+) II I X’ O X III IV (-,-) (+,-) Y’ Ist? IInd? Q : (1,0) lies in which Quadrant? A : None. Points which lie on the axes do not lie in any quadrant. Distance Formula Y 1 y - 2 y 2 y N PQN is a right angled . 1 x1 y 2 2 2 (x2-x1) PQ = PN + QN 2 2 2 X’ O X PQ = (x2-x1) +(y2-y1) x2 Y’ 22 PQ =( x2 − x 1) +( y 2 − y 1 ) Distance From Origin Distance of P(x, y) from the origin is 22 =(x − 0) +( y − 0) =+xy22 Applications of Distance Formula Parallelogram Applications of Distance Formula Rhombus Applications of Distance Formula Rectangle Applications of Distance Formula Square Area of a Triangle Y A(x1, y1) ) 2 , y , C(x3, y3) 2 B(x X’ O M L N X Y’ Area of ABC = Area of trapezium ABML + Area of trapezium ALNC - Area of trapezium BMNC Area of a Triangle A(x , y ) Y 1 1 ) 2 , y , C(x , y ) 2 3 3 B(x X’O M L N X Y’ Area of trapezium ABML + Area of trapezium ALNC - Area of trapezium BMNC 1 1 1 =(BM + AL) ( ML) +( AL + CN) ( LN) −( BM + CN) ( MN) 2 2 2 1 1 1 =(yyxx +) ( −) +( yyxx +) ( −) −( yyxx +) ( − ) 22112 2 1331 2 2332 x y 1 Sign of Area : Points anticlockwise ➔ +ve 1 11 = x y 1 2 22 Points clockwise ➔ -ve x33 y 1 Area of Polygons Area of polygon with points Ai (xi, yi) where i = 1 to n 1 x1 y 1xy22 x n−− 1 y n 1 x n y n = + +... + + 2 x2 y 2xy33 x n y n x 1 y 1 Can be used to calculate area of Quadrilateral, Pentagon, Hexagon etc. Collinearity of Three Points Method I : Use Distance Formula a b c Show that a+b = c Collinearity of Three Points Method II : Use Area of Triangle A (x1, y1) B (x2, y2) C (x3, y3) x11 y 1 Show that x22 y 1= 0 x33 y 1 Section Formula – Internal Division Y K Clearly AHP ~ PKB H AP AH PH = = BP PK BK X’ O X m x−− x y y L N M =11 = n x−− x y y Y’ 22 mx2++ nx 1 my 2 ny 1 P, m++ n m n Midpoint Midpoint of A(x1, y1) and B(x2,y2) m:n 1:1 x1++ x 2 y 1 y 2 P, 22 Section Formula – External Division P divides AB externally in ratio m:n Y K Clearly PAH ~ PBK H AP AH PH = = BP BK PK X’ O X m x−− x y y L N M =11 = n x−− x y y Y’ 22 mx2−− nx 1 my 2 ny 1 P, m−− n m n Centroid Intersection of medians of a triangle is called the centroid. A(x1, y1) F G E B(x2, y2) D C(x3, y3) Centroid is always denoted x2++ x 3 y 2 y 3 D, by G. 22 x1++ x 3 y 1 y 3 x1++ x 2 y 1 y 2 E, F, 22 22 Centroid A(x1, y1) F G E B(x2, y2) D C(x3, y3) Consider points L, M, N dividing AD, BE and CF respectively in the ratio 2:1 x++ xx y++ x y y y D, x2++ 2 32 2 3 3 y 2 2 3 112222 L, 1++ 2 1 2 x1++ x 3 y 1 y 3 x1++ x 2 y 1 y 2 E, F, 22 22 Centroid A(x1, y1) F G E B(x2, y2) D C(x3, y3) Consider points L, M, N dividing AD, BE and CF respectively in the ratio 2:1 x++ xx y++ x y y y D, x2++ 2 31 2 3 3 y 2 1 3 222222 M, 1++ 2 1 2 x1++ x 3 y 1 y 3 x1++ x 2 y 1 y 2 E, F, 22 22 Centroid A(x1, y1) F G E B(x2, y2) D C(x3, y3) Consider points L, M, N dividing AD, BE and CF respectively in the ratio 2:1 x++ xx y++ x y y y D, x2++ 2 31 2 2 3 y 2 1 2 332222 N, 1++ 2 1 2 x1++ x 3 y 1 y 3 x1++ x 2 y 1 y 2 E, F, 22 22 Centroid A(x1, y1) F G E B(x2, y2) D C(x3, y3) x1+ x 2 + x 3 y 1 + y 2 + y 3 L, 33 x+ x + x y + y + y Medians are M, 1 2 3 1 2 3 x2++ x 3 y 2 y 3 concurrent at the D,33 22 centroid, centroid x1+ x 2 + x 3 y 1 + y 2 + y 3 divides medians in N, x++ x33 y y xratio++ x 2:1 y y E, 1 3 1 3 F, 1 2 1 2 22 22 We see that L M N G Centroid A(x1, y1) F G E B(x2, y2) D C(x3, y3) x1+ x 2 + x 3 y 1 + y 2 + y 3 L, 33 x+ x + x y + y + y Centroid M, 1 2 3 1 2 3 x2++ x 3 y 2 y 3 D,33x1+ x 2 + x 3 y 1 + y 2 + y 3 22 G, x1+ x 2 + x 3 y 1 + y 2 + y 3 33 N, x++ x33 y y x++ x y y E, 1 3 1 3 F, 1 2 1 2 22 22 We see that L M N G Incentre Intersection of angle bisectors of a triangle is called the incentre A(x1, y1) F I E B(x2, y2) D C(x3, y3) Incentre is Let BC = a, AC = b, AB = c the centre of AD, BE and CF are the angle the incircle bisectors of A, B and C respectively. BD AB b bx2++ cx 3 by 2 cy 3 = = D, DC AC c b++ c b c Incentre A(x1, y1) F I E B(x2, y2) D C(x3, y3) AI AB AC AB++ AC c b Now, = = = = ID BD DC BD+ DC a bx++ cx by cy ax+( b + c) 2 3 ay +( b + c) 2 3 11b++ c b c I, a+( b + c) a +( b + c) ax++ bx cx Similarly I can be derived BD AB1 b 2 3 bx2++ cx 3 by 2 cy 3 I = = D,using E and F also DC ACa++ b c c b++ c b c Incentre A(x1, y1) F I E B(x2, y2) D C(x3, y3) AI AB AC AB++ AC c b Now, = = = = ID BD DC BD+ DC a bx++ cx by cy ax+( b + c) 2 3 ay +( b + c) 2 3 11b++ c b c I, a+( b + c) a +( b + c) ax++ bx cx Angle bisectors are BD AB1 b 2 3 bx2++ cx 3 by 2 cy 3 I = = D,concurrent at the incentre DC ACa++ b c c b++ c b c Excentre Intersection of external angle bisectors of a triangle is called the excentre E A(x1, y1) F E Excentre is B(x2, y2) D C(x3, y3) the centre of the excircle EA = Excentre opposite A −ax1 + bx 2 + cx 3 − ay 1 + by 2 + cy 3 E,A −a + b + c − a + b + c Excentre Intersection of external angle bisectors of a triangle is called the excentre E A(x1, y1) F E Excentre is B(x2, y2) D C(x3, y3) the centre of the excircle EB = Excentre opposite B ax1− bx 2 + cx 3 ay 1 − by 2 + cy 3 E,B a− b + c a − b + c Excentre Intersection of external angle bisectors of a triangle is called the excentre E A(x1, y1) F E Excentre is B(x2, y2) D C(x3, y3) the centre of the excircle EC = Excentre opposite C ax1+ bx 2 − cx 3 ay 1 + by 2 − cy 3 E,C a+ b − c a + b − c Cirumcentre Intersection of perpendicular bisectors of the sides of a triangle is called the circumcentre. A C O OA = OB = OC = circumradius B The above relation gives two simultaneous linear equations. Their solution gives the coordinates of O. Orthocentre Intersection of altitudes of a triangle is called the orthocentre.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    65 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us