Computational Real Algebraic Geometry and Applications to Robotics JNCF Lecture, Part 2

Computational Real Algebraic Geometry and Applications to Robotics JNCF Lecture, Part 2

Computational real algebraic geometry and applications to robotics JNCF lecture, part 2 Guillaume Moroz Inria Nancy - Grand Est March 4th, 2021 Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 1 / 52 Solving systems 1 With initial point Newton 2 Without initial point Symbolic approaches Numerical approaches Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 2 / 52 Newton f pxq “ 0 x0 “ initial point f px q x x n n`1 “ n ´ 1 f pxnq x2 x1 x0 Good for path tracking Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 3 / 52 Newton f pxq “ 0 x0 “ initial point ´1 xn`1 “ xn ´ Df pxnq f pxnq x2 x1 x0 Good for path tracking Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 4 / 52 Reliable Newton with Kantorovich ´1 2 Kpf , x0q “ sup }Df px0q D f pxq} x ´1 βpf , x0q “ }Df px0q f px0q} Theorem (Kantorovich) If βpf , x0qKpf , x0q ¤ 1{2, then f has a unique solution in Bpx0, 2βpf , x0qq. Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 5 / 52 Reliable Newton with Smale k ´1 D f px0q 1 γpf , x0q “ sup }Df px0q } k´1 k¥2 k! ´1 βpf , x0q “ }Df px0q f px0q} Theorem (Smale) ? If β f , x γ f , x 3 2 2, p 0q p 0q ¤ ´ ? 1´ 2{2 then f has a unique solution in Bpx0, q. γpf ,x0q Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 6 / 52 Reliable interval Newton B a box interval containing p 1 variable ´1 f pxq´f ppq Npxq “ p ´ x´p f ppq NpBqĂ B ñ´N has a¯ fix point in B ñ f has a solution in B 2 variables or more f ppq NpBq “ p ´ lJpBq´1 gppq ˆ ˙ NpBqĂ B ñ f “ g “ 0 has a solution in B Interval operations ra, bs ` rc, ds “ ra ` c, b ` ds ra, bs b rc, ds “ rminpac, ad, bc, bdq, maxpac, ad, bc, bdqs Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 7 / 52 Further reading >Ì j>̵ÕiÃÊEÊ««V>ÌÃÊx{ i>*iÀÀiÊ i`iÕ *ÌÃÊÝiÃ]ÊÊ <jÀÃÊiÌÊ>ÊjÌ `iÊÊ `iÊ iÜÌ Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 8 / 52 Further computing Computer Algebra Systems Maple Mathematica Mathemagix (mmx) Matlab SageMath Xcas ... Numerical Newton Interval and ball arithmetic Libraries Boost (C++) Arb (C, Python) [Johansson] MPSolve (C) [Bini, Fiorentino, Robol] GAOL (C++) [Goualard] GNU Scientific Library (C) Intlab (Octave/Matlab) [Rump] Roots, Optim, NLsolve (Julia) mpfi (C) [Revol] Scipy (Python) numerix (mmx, C++) [van der Hoeven] ... IntervalArithmetic (Julia) [Benet,Sanders] ... Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 9 / 52 Univariate Representation Reduce problem to univariate polynomial y 0 0 x ppxq “ 0 y “ qpxq Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 10 / 52 Resultant definition Given two polynomials in Crys : d P “ p0y ` ¨ ¨ ¨ ` pd with roots σ1, . , σd d Q “ q0y ` ¨ ¨ ¨ ` qd with roots τ1, . , τd Definition: Resultant d d RespP, Qq “ p0 q0 i,j pσi ´ τj q d ± “ p0 Q pσ1q ¨ ¨ ¨ Q pσd q d2 d “ p´1q q0 P pτ1q ¨ ¨ ¨ P pτd q Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 11 / 52 Resultant definition Bezout ϕ : Crysd´1 ˆ Crysd´1 Ñ Crys2d´1 U , V ÞÑ UP ` VQ ϕpU, V q “ 1 ô gcdpP, Qq “ 1 ô ϕ invertible Resultant r is the determinant of the Sylvester Matrix r P hP, Qi “ I Definition: Sylvester matrix 1 2 ¨ ¨ ¨ d ` 1 d ` 2 d ` 3 ¨ ¨ ¨ p0 q0 p p q q ¨ 1 0 1 0 ˛ p2 p1 p0 q2 q1 q0 ˚ p p p p q q q q ‹ ˚ 3 2 1 0 3 2 1 0 ‹ ˚ . .. .. ‹ ˚ . ‹ ˚ ‹ Guillaume Moroz˝ (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021‚ 12 / 52 Bivariate case Given two polynomials in Crx, ys of degree d in x and y: d P “ p0pxqy ` ¨ ¨ ¨ ` pd pxq RespP, Qq is a polynomial in x Opn3´1{ω`εq arithmetic operations d Q “ q0pxqy ` ¨ ¨ ¨ ` qd pxq [Villard 2018] Opn2`εq randomized in a finite field [van der Hoeven, Lecerf 2019] y 0 0 x Resd p Ppx, yq , Qpx, yq qpαq “ Resd p Ppα, yq , Qpα, yq q Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 13 / 52 First subresultant definition Given two polynomials in Crys : d P “ p0y ` ¨ ¨ ¨ ` pd with roots σ1, . , σd d Q “ q0y ` ¨ ¨ ¨ ` qd with roots τ1, . , τd Properties Sres1 “ s1y ` s0 has degree at most 1 D E Sres1 P P , Q “ I Definition: first subresultant d´1 Q pσj q Sres1pP, Qq “ p0 py ´ σ1q j‰1 σ ´σ ˜ j 1 ` ¨ ¨ ¨ ` ± Q pσj q py ´ σd q j‰d σ ´σ j d ¸ Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and± Robotics March 4th, 2021 14 / 52 First subresultant definition ϕ : Crysd´2 ˆ Crysd´2 Ñ Crys2d´2 U , V ÞÑ UP ` VQ The s0 and s1 are the determinants of minors of the Sylvester Matrix Sylvester matrix 1 2 ¨ ¨ ¨ d ` 1 d ` 2 d ` 3 ¨ ¨ ¨ p0 q0 p p q q ¨ 1 0 1 0 ˛ p2 p1 p0 q2 q1 q0 ˚ p p p p q q q q ‹ ˚ 3 2 1 0 3 2 1 0 ‹ ˚ . .. .. ‹ ˚ . ‹ ˚ ‹ ˝ ‚ Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 15 / 52 Parametrization of y y 0 0 x s1pxqy ` s0pxq “ 0 rpxq “ 0 Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 16 / 52 Three variables and more f1px1, ¨ ¨ ¨ , xnq “ ¨ ¨ ¨ “ fnpx1, ¨ ¨ ¨ , xnq “ 0 Problem Find ppx1q “ q1f1 ` ¨ ¨ ¨ ` qnfn D Matrix of 1, x1,..., x1 modulo hf1,..., fni D 1 ¨ ¨ ¨ x1 m1 M “ . ¨ ˛ mk ˚ ‹ ˚ ‹ ˝ ‚ D ñ v P KerpMq iff v0 ` ¨ ¨ ¨ ` vDx P hf1,..., fni Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 17 / 52 Three variables and more f1px1, ¨ ¨ ¨ , xnq “ ¨ ¨ ¨ “ fnpx1, ¨ ¨ ¨ , xnq “ 0 Problem Find ppx1q “ q1f1 ` ¨ ¨ ¨ ` qnfn Matrix of multiplication by x1 modulo hf1,..., fni x1m1 ¨ ¨ ¨ x1mk m1 M “ . ¨ ˛ mk ˚ ‹ ˚ ‹ ˝ ‚ ñ χM px1q P hf1,..., fni Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 18 / 52 Three variables and more f1px1, ¨ ¨ ¨ , xnq “ ¨ ¨ ¨ “ fnpx1, ¨ ¨ ¨ , xnq “ 0 Problem Find ppx1q “ q1f1 ` ¨ ¨ ¨ ` qnfn Matrix of multiplication by x1 modulo f1px1q 0 0 ... 0 ´c0 1 0 ... 0 ´c1 ¨ ˛ M “ 0 1 ... 0 ´c2 ˚. .. ‹ ˚. ‹ ˚ ‹ ˚0 0 ... 1 ´c ‹ ˚ d´1‹ ˝ ‚ ñ χM px1q “ f1px1q P hf1i Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 19 / 52 Normal form and univariate representation Normal form x1mi mod hf1,..., fni Euclidean division by Gröbner basis Groebner Bases computation n ¡ 2 in Oppndqpω`1qnq operations [Bardet, Faugère, Salvy 2015] n “ 2 in Opd2q with terse representation [van der Hoeven, Larrieu 2018] r Univariate Representation r Multivariate subresultant Rational Univariate Representation [Kronecker 1882, Rouillier 1999] u-resultant and its derivatives at point pt, a1,..., anq u-resultant “ C pu0 ` u1ζn ` ¨ ¨ ¨ ` unζnq ζ F ζ 0 | ¹p q“ Lexicographical Gröbner bases Polynomial parametrization generically, bigger size [Dahan, Schost 2004] Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 20 / 52 Univariate Representation with Geometric Resolution f px, yq “ 0 Theorem (Hensel lifting) y0 “ root of f p0, yq “ 0 f px,ynpxqq 2n`1 yn 1pxq “ ynpxq ´ mod x $ ` Bf px,y pxqq & By n 2n Then ynpxq is a% root of f px, yq “ 0 mod x . Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 21 / 52 Univariate Representation with Geometric Resolution f px, yq “ 0 Theorem (Hensel lifting) y0 “ root of f p0, yq “ 0 f px,ynpxqq 2n`1 yn 1pxq “ ynpxq ´ mod x $ ` Bf px,y pxqq & By n 2n Then ynpxq is a% root of f px, yq “ 0 mod x . Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 21 / 52 Univariate Representation with Geometric Resolution f px, yq “ 0 Theorem (Hensel lifting) y0 “ root of f p0, yq “ 0 f px,ynpxqq 2n`1 yn 1pxq “ ynpxq ´ mod x $ ` Bf px,y pxqq & By n 2n Then ynpxq is a% root of f px, yq “ 0 mod x . Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 21 / 52 Univariate Representation with Geometric Resolution f px, yq “ 0 Theorem (Hensel lifting) y0 “ root of f p0, yq “ 0 f px,ynpxqq 2n`1 yn 1pxq “ ynpxq ´ mod x $ ` Bf px,y pxqq & By n 2n Then ynpxq is a% root of f px, yq “ 0 mod x . Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 21 / 52 Univariate Representation with Geometric Resolution f px, yq “ 0 Theorem (Hensel lifting) y0 “ root of f p0, yq “ 0 f px,ynpxqq 2n`1 yn 1pxq “ ynpxq ´ mod x $ ` Bf px,y pxqq & By n 2n Then ynpxq is a% root of f px, yq “ 0 mod x . Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics March 4th, 2021 21 / 52 Univariate Representation with Geometric Resolution f px, yq “ 0 Theorem (Hensel lifting) y0 “ root of f p0, yq “ 0 f px,ynpxqq 2n`1 yn 1pxq “ ynpxq ´ mod x $ ` Bf px,y pxqq & By n 2n Then ynpxq is a% root of f px, yq “ 0 mod x .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    67 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us