The Structure Factor

The Structure Factor

The Structure Factor Suggested Reading Pages 303-312 in De Grae f & Mc Henry Pages 59-61 in Engler and Randle 1 Structure Factor (Fhkl) N 2(ihukvlwiji ) Ffehkl i i1 • Describes how atomic arrangement (uvw) influences the intensity of the scattered beam. • It tells us which reflections (i. e., peaks, hkl)to) to expect in a diffraction pattern. 2 Structure Factor (Fhkl) • The amplitude of the resultant wave is given by a ratio of amplitudes: amplitude of the wave scattered by all atoms of a UC F hkl amplitud eof th e wave scatteredb d by one el ectron • The intensity of the diffracted wave is proportional 2 to |Fhkl| . 3 Some Useful Relations ei = e3i = e5i = … = -1 e2i = e4i = e6i = … = +1 eni = (-1)n, where n is anyyg integer eni = e-ni, where n is any integer eix + e-ix =2 cos x Needed for structure factor calculations 4 Fhkl for Simple Cubic N 2(ihukvlwiji ) Ffehkl i • Atom coordinate(s) u,v,w: i1 – 0,0,0 2(00ih k 0) l Ffehkl f No matter what atom coordinates or plane indices you substitute into the structure factor equation for simple cubic crystals, the solution is always non-zero. Thus, all reflections are allowed for simple cubic (primitive) structures. 5 Fhkl for Body Centered Cubic N 2(ihukvlwiji ) Ffehkl i • Atom coordinate(s) u,v,w: i1 – 0,0,0; – ½, ½, ½. hkl 2i 2(0)i 222 Ffefehkl Ffe1 ih k l hkl When h+k+l is even Fhkl = non-zero → reflection. When h+k+l is odd Fhkl = 0 → no reflection. 6 Fhkl for Face Centered Cubic N 2(ihukvlwiji ) Ffehkl i • Atom coordinate(s) u,v,w: i1 – 0,0,0; – ½,½,0; – ½,0,½; – 0,½,½. hk hl k l 222iii 20i 22 22 22 Ffhkl ffe fe f e f e ih k ih l ik l Ffehkl 1 e e 7 Fhkl for Face Centered Cubic ih k ih l ik l Ffehkl 1 e e • Substitute in a few values of hkl and you will find the following: – When h,k,l are unmixed (i.e. all even or all odd), then Fhkl = 4f. [NOTE: zero is considered even] – Fhkl = 0f0 for m ixe did in dices (i.e., a com bina tion o f o dd and even). 8 Fhkl for NaCl Structure N 2(ihukvlwiji ) Ffehkl i • Atom coordinate(s) u,v,w: i1 – Na at 0,0,0 + FC transl.; • 0,0,0; •½,½,0; This means these coordinates • ½0½½,0,½; (u,v,w) • 0,½,½. – Cl at ½,½,½ + FC transl. •½,½,½; ½,½,½ The re-assignment of coordinates is • 11½1,1,½; 00½0,0,½ based upon the equipoint concept in • 1,½,1; 0,½,0 the international tables for • ½,1,1. ½,0,0 crystallography • Substitute these u,v,w values into Fhkl equation. 9 Fhkl for NaCl Structure – cont’d N 2(ihukvlwiji ) Ffehkl i •For Na: i1 2iihkihlikl(()0)()()() ( ) ( ) ( ) feNa e e e ih() k ih () l ik () l feNa 1 e e •For Cl: 2(ih klkh ) 2( ih l ) 2( i k l ) feih() k l e222 e e Cl ih() k l i (22hk lkh ) i ( 2 h 2 l ) i ( 22 kl ) feCl e e e ih() k l i ()()lkh i i() feCl e e e These terms are all positive and even. Whether the exponent is odd or even depends solely on the remaining h, k, and l in each exponent. 10 Fhkl for NaCl Structure – cont’d N 2(ihukvlwiji ) Ffehkl i • Therefore Fhkl: i1 ih() k ihl () ik () l Ffhkl Na 1 e e e ih() k l i ()()()lkh i i feCl e e e which can be simplified to*: ih() k l ih ()()() k ihl ik l Fffehkl Na Cl 1 e e e 11 Fhkl for NaCl Structure When hkl are even Fhkl = 4(fNa + fCl) Primary reflections When hkl are odd Fhkl =4(= 4(fNa - fCl) Superlattice reflections When hkl are mixed Fhkl = 0 NfltiNo reflections 12 (200) 100 90 NaCl CuKα radiation 80 70 (220) %) 60 50 ntensity ( II 40 30 (420) 20 (222) (422) (600) (442) 10 (111) (400) (333) (440) (311) (511) (331) (531) 2θ (°) 0 20 30 40 50 60 70 80 90 100 110 120 13 Fhkl for L12 Crystal Structure N 2(ihukvlwiji ) Ffehkl i • Atom coordinate(s) u,v,w: i1 – 0,0,0; A B – ½,½,0; – ½,0,½; – 0,½,½. hk hl k l 2(0)i 222iii Ffefe22 fe 22 fe 22 hkl AB B B ih() k ih () l ik () l Fffe e e hkl AB 14 Fhkl for L12 Crystal Structure ih() k ih () l ik () l Fffe e e hkl AB (1 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB A B (1 1 0) Fhkl = fA + fB(1-1-1) = fA – fB (1 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 0 0) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 1 0) Fhkl = fA + fB(-111+1-1) = fA – fB (2 2 0) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 2 1) Fhkl = fA + fB(1-1-1) = fA – fB (3 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB (3 1 0) Fhkl = fA + fB(1-1-1) = fA – fB (3 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 2 2) Fhkl = fA + fB(1+1+1) = fA +3 fB 15 Example of XRD pattern Intensity (%) from a material with an (111) L1 crystal structure 100 2 A B 90 80 70 60 50 (200) 40 30 (311) (220) 20 (100) (110) 10 (300) (222) (210) (211) (221) (()310) (()320) (321) 2 θ (°) 0 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 16 Fhkl for MoSi2 • Atom positions: c – Mo atoms at 0,0,0; ½,½,½ – Si a toms a t00t 0,0,z; 000,0,z; ½½½½,½,½+z; ½½½½,½,½-z; z=1/3 –MoSi2 is actually body centered tetragonal with a = 3.20 Å and c = 7.86 Å z y x c c c a z x b z z y a x y y x b Viewed down z-axis a b b a Viewed down x-axis Viewed down y-axis 17 Fhkl for MoSi2 N 2 ihu()iji kv lw Ffehkl i i1 Substitute in atom positions: • Mo atoms at 0,0,0; ½,½,½ • Si atoms at 0,0, ; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3 222iiihk lll hk5 l hkl 2(0)i 2()ii 2() Ffefe 222 fefefe33 226 fe 226 hkl Mo Mo Si Si Si Si lli hk 5lli hk ih k l 2()ii 2() Ff1 e f e33 e e 33 e Mo Si Now we can plug in different values for h k l to determine the structure factor. • For hklh k l = 1001 0 0 5(0) (0) 2(ii(0) ) 2( (0) ) ii10 10 i100 33 33 Ffhkl Mo1 e fe Si e e e 2 Fhkl 0 ffMo(()11)( Si (1111) 0 2 You will soon learn that intensity is proportional to Fhkl ; there is NO REFLECTION! 18 Fhkl for MoSi2 – cont’d Now we can plug in different values for hklh k l to determine the structure factor. •For h k l = 0 0 1 5(1) (1) 2()ii11 2() ii00 00 0 i001 33 33 Ffeehkl Mo fee Si e e ii2 2 fefCOSeMo(1 ) Si (2 (3 ) ) ffMo(1 1) si ( 1 1) 0 2 Fhkl 0 NO REFLECTION! •For h k l = 1 1 0 0iii110 2ii (0) 2 (0) 110 110 Ffeehkl Mo fee Si e e 2(0)(0)22iii fefeeeeMo(1 ) Si ( ) ffMosi(2) (4) 2 Fhkl POSITIVE! YOU WILL SEE A REFLECTION • If you continue for different hklh k l combinations… trends will emerge… this will lead you to the rules for diffraction… h + k + l = even 19 (103) 100 90 MoSi2 CuKα radiation 80 (110) 70 (101) %) 60 50 ntensity ( II 40 (002) (213) 30 (112) (200) 20 (202) (211) (116) (206) 10 (301) (303) (006) (314) (204) (222) (312) 2θ (°) 0 20 30 40 50 60 70 80 90 100 110 120 20 Fhkl for MoSi2 – cont’d 2000 JCPDS -International Centre for Diffraction Data . All rights reserved PCPDFWIN v. 2.1 21 Structure Factor (Fhkl) for HCP N 2ihukvlw()iji Ffhkl ie i1 • Describes how atomic arrangement (uvw) influences the intensity of the scattered beam. i.e., • It tells us which reflections (i.e., peaks, hkl) to expect in a diffraction pattern from a given crystal structure with atoms located at positions u,v,w. 22 • In HCP crystals (like Ru, Zn, Ti, and Mg) the lattice point coordinates are: –0 0 0 121 – 332 • Therefore, the structure factor becomes: hkl2 2i 332 Ffhkl i 1 e •We simppylify this exp ression b y lettin g: hk 21 g 32 which reduces the structure factor to: 2ig Ffehkl i 1 • We can simplify this once more using: from which we find: eeix ix 2cos x 222hkl 2 Ffhkl4cos i 32 Selection rules for HCP 0 when hkn 2 3 and lodd 2 2 fhknli when 2 3 1 and even Fhkl 2 33whenfhknli when 2231 3 1 and odd 2 4fhknli when 2 3 and even For your HW problem, you will need these things to do the structure factor calculation for Ru. HINT: It might save you some time if you already had the I CDD car d f or Ru. List of selection rules for different crystals Crystal Type Bravais Lattice Reflections Present Reflections Absent Simple Primitive, PAny h,k,l None Body-centered Body centered, I h+k+l = even h+k+l = odd Face-centered Face-centered, F h,k,l unmixed h,k,l mixed NaCl FCC h,k,l unmixed h,k,l mixed Zincblende FCC Same as FCC, but if all even h,k,l mixed and if all even and h+k+l4N then absent and h+k+l4N then absent Base-centered Base-centered h,k both even or both odd h,k mixed Hexagonal close-packed Hexagonal h+2k=3N with l even h+2k=3N with l odd h+2k=3N1 with l odd h+2k=3N1 with l even 26 What about solid solution alloys? • If the alloys lack long range order, then you must average the atomic scattering factor.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us