Staphylococcus Aureus Α-Toxin Induces Inflammatory Cytokines Via

Staphylococcus Aureus Α-Toxin Induces Inflammatory Cytokines Via

Staphylococcus aureus -toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides Inaugural-Dissertation Zur ErlangungdesDoktorgrades Dr.rer.nat. der Fakultät BiologieundGeografie ander UniversitätDuisburg-Essen vorgelegtvon JIE MA Hubei,P.R.China July 2018 Die der vorliegenden Arbeit zugrundeliegenden Experimente wurden am Institut für Molekularbiologie (Tumorforschung) der Universität Duisburg-Essen durchgeführt 1. Gutachter: PD Dr. Marc Seifert 2. Gutachter: Prof. Dr. Erich Gulbins 3. Gutachter: Prof. Dr. Sven Brandau Vorsitzenderdes Prüfungsausschusses: PD Dr. Marc Seifert Tag der mündlichen Prüfung: 5.6.2020 Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/71855 URN: urn:nbn:de:hbz:464-20200707-120621-7 Alle Rechte vorbehalten. Parts of this thesis are published or submitted for publicationin the following articles: Jie Ma, Erich Gulbins, Michael J. Edwards, Charles C. Caldwell, Martin Fraunholz, Katrin Anne Becker. Staphylococcus aureus -toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides. Cellular Physiology and Biochemistry INDEX List of figures ........................................................................................................................................... 1 1. Introduction ......................................................................................................................................... 2 1.1 staphylococcus aureus (s.aureus) .................................................................................................. 2 1.1.1 Components and Products of S. aurues ................................................................................. 2 1.1.2 alpha-toxin .............................................................................................................................. 5 1.2 Acid sphingomyelinase and ceramide system............................................................................. 13 1.2.1 Lipid interactions and domain formation ............................................................................. 13 1.2.2 Ceramide and ceramide enriched platforms........................................................................ 14 1.2.3 Acid sphingomyelinase (ASM) .............................................................................................. 19 1.2.4 ASM and ceramide system in bacterial infection ................................................................. 20 1.3 The inflammasome in the host response to infection ................................................................ 23 1.3.1 Inflamasome ......................................................................................................................... 23 1.3.2 Regulation of inflammation by inflammasomes .................................................................. 25 1.4 Aims of the study ......................................................................................................................... 29 2 Materials ............................................................................................................................................. 31 2.1 Chemicals..................................................................................................................................... 31 2.2 Tissue culture materials .............................................................................................................. 32 2.3 Antibodies ................................................................................................................................... 32 2.4 Animals ........................................................................................................................................ 33 2.5 Equipment ................................................................................................................................... 33 2.6 Buffer and Solutions .................................................................................................................... 34 3 Methods ............................................................................................................................................. 36 3.1 Isolation and cultivation of murine bone marrow derived macrophages .................................. 36 3.2 Infection experiments ................................................................................................................. 36 3.3 Assay for acid sphingomyelinase activity .................................................................................... 36 3.4 Immunostainings ......................................................................................................................... 37 3.5 Western blot and immunoprecipitation studies ......................................................................... 38 3.6 Enzyme-linked immunosorbent assay (ELISA)............................................................................. 39 3.7 Statistics ...................................................................................................................................... 39 4 Results ................................................................................................................................................ 40 4.1 S. aureus α-toxin activates the acid sphingomyelinase............................................................... 40 4.2 S. aureus α-toxin induces formation of ceramides within lysosomes. ........................................ 41 4.3 S. aureus α-toxin triggers a release of cathepsin B and D from lysosomes into the cytoplasmvia the acid sphingomyelinase ................................................................................................................ 48 4.4 Pharmacological inhibition of the acid sphingomyelinase prevents the release of cathepsin B and D from lysosomes into the cytoplasm after S. aureus α-toxin treatment. ................................ 55 4.5 Cytoplasmic cathepsin B associates with inflammasome proteins. ............................................ 57 4.6 Genetic deficiency or pharmacological inhibition of the acid sphingomyelinase reduces formation and release of Interleukin 1β and TNF-α in macrophages after S. aureus α-toxin treatment. ......................................................................................................................................... 62 5 Disscussion ......................................................................................................................................... 66 5.1 S. aureus α-toxin activates the acid sphingomyelinase/ceramide system ................................. 66 5.2 Ceramide formation within lysosome. ........................................................................................ 67 5.3 cathepsin B and D releasefrom lysosomes into the cytoplasmvia the acid sphingomyelinase .. 69 5.4 The activate of inflammasome via cathepsin B ........................................................................... 70 6 Summery ............................................................................................................................................ 72 7 References .......................................................................................................................................... 73 8 Publications ........................................................................................................................................ 93 9 Abbreviations ..................................................................................................................................... 94 10 Acknowledgements .......................................................................................................................... 95 List of figures Figure 1.1.1A Sites of infection and diseases caused by Staphylococcus aureus……4 Figure 1.1.1 B Structure of S. aureus………………………………………………5 Figure 1.1.2 A Molecular model of the of α-toxin heptameric pore.structure……8 Figure 1.1.2 B Cellular responses to intoxication by Hla…………………………10 Figure 1.1.2 C Dual mechanism of action of α-toxin on susceptible host cells …12 Figure 1.2.2 A Structure of ceramide………………………………………………17 Figure 1.2.2 B Ceramide synthesis and metabolism………………………………18 Figure 1.2.2 C Ceramide action in biological membranes…………………………21 Figure 1.3.1 Inflammasome components and inflammasomes……………………29 Fiugre 1.3.2 Models for inflammasome activation………………………………32 Figure 4.1 S. aureus α-toxin activates the acid sphingomyelinase…………………48 Figure 4.2 S. aureus α-toxin induces formation of ceramides within lysosomes…55 Figure 4.3 S. aureus α-toxin triggers a release of cathepsin B and D from lysosomes into the cytoplasm, which is prevented by acid sphingomyelinase deficiency………63 Figure 4.4 Pharmacological inhibition of the acid sphingomyelinase prevents the release of cathepsin B and D from lysosomes into the cytoplasm after S. aureus α-toxin treatment……………………………………………………………………………………66 Figure 4.5 Cytoplasmic cathepsin B associates with inflammasome proteins……73 Figure 4.6 Genetic deficiency or pharmacological inhibition of the acid sphingomyelinase reduces formation and release of Interleukin 1β and TNF-α in macrophages after S. aureus α-toxin treatment……………………………………………………………………………76 1 1. Introduction 1.1 staphylococcus aureus (s.aureus) 1.1.1 Components and Products of S. aurues In an

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    102 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us