Quantum Information Processing with Superconducting Qubits

Quantum Information Processing with Superconducting Qubits

Introduction Quantum Information Processing Superconducting Qubits and Circuit QED Circuit QED: Quantum Information Processing with a Photon Bus Experimental Setup and Details Initialization and Benchmarking of Single-Qubit Gates Two-Qubit Circuit QED: Riding the Quantum Bus Entanglement On-Demand and Joint Readout Two-Qubit Algorithms Conclusions and Future Work Bibliography ©byJerryMoyChow All rights reserved. Quantum Information Processing with Superconducting Qubits A Dissertation PresentedtotheFacultyoftheGraduateSchool of Yale University in Candidacy for the Degree of Doctor of Philosophy by Jerry Moy Chow Dissertation Director: Professor Robert J. Schoelkopf May 2010 Abstract Quantum Information Processing with Superconducting Qubits Jerry Moy Chow 2010 This thesis describes the theoretical framework, implementation, and measurements of a quantum processor comprised of superconducting qubits coupled in the circuit quantum electrodynamics (QED) architecture. In the realization of circuit QED, two superconducting ‘transmon’ charge qubits are capacitively coupled to a one-dimensional microwave transmis- sion line resonator which serves as a quantum bus. Single-qubit rotations can be applied through the resonator and their operation is characterized using various benchmarking techniques. Through a virtual photon interaction via the quantum bus, the two qubits can coherently swap a single excitation. A separate two-qubit conditional phase interaction is also observed which is attributable to an interaction in the two-excitation manifold of the transmons. Furthermore, the same quantum bus which couples the qubits can be used as a joint detector of the full two-qubit quantum state. Entanglement witnesses and a violation of a Bell-type inequality are found using this joint detector on highly entangled states. Fi- nally, combining the single-qubit rotations, conditional phase interaction, and joint readout, allows the realization and characterization of simple quantum algorithms, specifically the Deutsch-Jozsa and Grover’s search algorithms. Contents Contents v List of Figures xi List of Tables xv Acknowledgements xvii Publication list xix Nomenclature xxi Introduction . Computing with quantum mechanics . ...................... . Experimentalimplementationsofquantumprocessors............. . Overviewofthesis................................... Quantum Information Processing . Universalquantumcomputing........................... . Single-qubit gates ................................... . Two-qubitentanglementgates............................ .. cNOTgate.................................. .. c-Phase gate√ (cUij).............................. .. iSWAP and iSWAPgates......................... . Quantumalgorithms................................. .. Quantum parallelism in an algorithm .................. .. Deutsch-Jozsa algorithm .......................... v vi contents .. Grover’s search algorithm . ....................... .. Shor’s and other quantum algorithms ................... . Quantummeasurement............................... .. Density matrix ................................ .. State tomography .............................. . Entanglementmetrics................................ .. Concurrence ................................. .. Entanglement witnesses . ....................... . Belltests........................................ .. Clauser-Horne-Shimony-Holt inequality ................ .. CHSH entanglement witness . ....................... . Chaptersummary................................... Superconducting Qubits and Circuit QED . Superconductingqubits............................... .. Josephson junction as a non-linear inductor ............... .. The Cooper-pair box qubit . ....................... .. The transmon qubit ............................. . Couplingsuperconductingqubits.......................... .. Fixed capacitive coupling . ....................... .. Tunable inductive coupling . ....................... .. Quantum bus coupling ........................... . Cavity quantum electrodynamics .......................... .. Strong coupling regime ........................... .. Dispersive coupling regime . ....................... . CircuitQED...................................... .. Coupling a transmon to a coplanar waveguide resonator ....... .. Dispersive regime of circuit QED ..................... .. Strong dispersive regime . ....................... . Qubitdecoherence.................................. .. Relaxation and the Purcell effect ...................... .. Dephasing .................................. . Chaptersummary................................... Circuit QED: Quantum Information Processing with a Photon Bus . Initialization . ..................................... . Single-qubit gates in circuit QED .......................... .. Introducing a drive ............................. .. X-Y gates for a qubit ............................. .. X-Y gates for a transmon multi-level atom ................ .. Z (phase) gates ................................ . Two-qubitgatesincircuitQED........................... contents vii .. Two-qubits in the dispersive regime ................... .. Virtual qubit-qubit interaction . ...................... .. σz ⊗ σz higher level transmon interaction . ............. . Muliplexedjointqubitreadout........................... .. Deriving the measurement operator ................... .. State tomography in circuit QED ..................... .. Entanglement by joint measurement ................... Chaptersummary................................... Experimental Setup and Details . Experimentaltestsamples.............................. ResonatorFabrication................................ .. Resonator parameters ............................ .. Optical lithography ............................. Transmonfabrication................................. .. ‘Traditional’ transmon ........................... .. Balanced design ............................... .. Flux-bias transmon design . ...................... Sample boards and holders .............................. .. Coffin design ................................. .. Octobox design ............................... Cryogenic setup .................................... Roomtemperaturecontrol.............................. Pulsecontrolandmodulation............................ Chaptersummary................................... Initialization and Benchmarking of Single-Qubit Gates . Initializing pure states ................................ .. Nonlinear vacuum Rabi ........................... .. Cavity temperature ............................. .. Vacuum Rabi summary ........................... Characterizing single-qubit gates .......................... Single-qubit gate error experiments . ...................... .. Microwave pulse shaping .......................... .. Calibration of single-qubit gates ...................... .. Single qubit readout calibration ...................... .. Double π metric............................... .. Quantum process tomography . ...................... .. Randomized benchmarking . ...................... .. Summary of error metrics . ...................... Derivative-basedpulseshaping........................... .. Experimental details ............................. viii contents .. Results with standard pulse shaping ................... .. Experimentally implementing derivative pulse shaping ........ .. Summary of DPS .............................. Chaptersummary................................... Two-Qubit Circuit QED: Riding the Quantum Bus . Experimentaldetails................................. Two-qubitspectroscopy............................... .. Qubit-qubit avoided crossing ....................... .. The dark state ................................. Multiplexedjointqubitreadout........................... Coherentstatetransfer:Starkswap......................... Chaptersummary................................... Entanglement On-Demand and Joint Readout . Experimentalsetup.................................. Virtual swap interaction via flux bias . ...................... Higher-level transmon interaction . ...................... .. Tuning up a c-Phase gate . ....................... .. Generating Bell states ............................ Jointreadoutoftwoqubits.............................. Calibratingthemeasurementmodel........................ QuantumstatetomographyandthePauliset................... .. The density matrix representation ..................... .. Biasing of metrics by maximum-likelihood estimation ........ .. The Pauli set representation . ....................... Characterizing the quantum states . ...................... .. Fidelity to targeted states . ....................... .. Entanglement witnesses . ....................... .. Clauser-Horne-Shimony-Holt inequality violation . ........ Chaptersummary................................... Two-Qubit Algorithms . Experimentaldetails................................. Deutsch-Jozsaalgorithm............................... .. Breaking down the algorithm ....................... .. Deutsch–Jozsa results ............................ Groversearchalgorithm............................... .. The oracle ................................... .. Breaking down the algorithm ....................... .. Grover results and debugger . ....................... Chaptersummary................................... contents ix Conclusions and Future Work . Improving one and two-qubit operations ..................... .. Longer coherence

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    322 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us