Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 384 An Investigation into Predation, Mortality and Taphonomic Bias in the Population Distribution of Neptunea contraria from the Red Crag of East Anglia Påverkan av predation, dödlighet och tafonomi hos Neptunea contraria från Red Crag, England Alexander Seale INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 384 An Investigation into Predation, Mortality and Taphonomic Bias in the Population Distribution of Neptunea contraria from the Red Crag of East Anglia Påverkan av predation, dödlighet och tafonomi hos Neptunea contraria från Red Crag, England Alexander Seale ISSN 1650-6553 Copyright © Alexander Seale Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract An Investigation into Predation, Mortality and Taphonomic Bias in the Population Distribution of Neptunea contraria from the Red Crag of East Anglia Alexander Seale Predation is a key factor in evolutionary dynamics. It disrupts the potential of fossilisation in prey items and is poorly recorded in the fossil record; failed predation in conical marine gastropods is recorded in scars. Quantifying the scar distribution and collection and taphonomic biases present in the fossil record of the gastropod Neptunea contraria, of the Red Crag Formation, Gelasian, Pleistocene, UK is necessary to approach this dynamic. Neptunea contraria is highly abundant in the Red Crag Formation which is easily accessed. The size and scarring on a large number (450+) of individuals was collected, recorded and measured from pre-existing and new material. The size distribution of Neptunea contraria is non- normal and is enriched in larger individuals, the scar distribution – expected to be Poisson – is not so. Taphonomic and Collection bias had a large influence over the size and scar distributions of Neptunea contraria. Material from the same localities shows very different size distributions. The lack of Poisson distribution suggests different rates of unsuccessful predation over life history of Neptunea contraria, assuming the data is valid. Keywords: Predation, taphonomy, sampling bias, palaeobiology, gastropods, population distribution Degree Project E1 in Earth Science, 1GV025, 30 credits Supervisor: Graham Budd Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, No. 384, 2016 The whole document is available at www.diva-portal.org Populärvetenskaplig sammanfattning Påverkan av predation, dödlighet och tafonomi hos Neptunea contraria från Red Crag, England Alexander Seale Predation anses vara en viktig faktor inom ekologi och evolution men till vilken grad har effekterna av predation förändrats genom geologisk tid? Det centrala fokuset i denna studie ligger i att frambringa en förståelse av både population- och predationsfördelningen bland marina snäckor av arten Neptunea contraria av Pleistocen ålder från Red Crag-formationen, East Anglia, Storbritannien. Framgångsrik predation resulterar i förstörelsen av snigeln och dess livshistoria registreras i deras skal. Misslyckad predation bevaras i skalen bland individer som överlevt genom ärrbildningar. Det finns ett okänt samband mellan misslyckad och framgångsrik predation. Samlingen av fossilt material från Sedgwick-museet i Cambridge, Storbritannien, ligger till grund för denna studie. Detta material är ofullständigt (d.v.s. material saknas) och noterbart fragmenterat vilket orsakats av nedbrytande processer, därav tafonomi. Denna studie belyser flertalet källor som ger upphov till ett ofullständigt fossilt register, därav processer direkt relaterade till fossilisering och antropogen insamling. Genom att jämföra flertalet uppsättningar av fossilt material som insamlats av olika personer så kan graden av bias i förhållande till insamlingen undersökas. Resultatet av denna studie visar att samlingen av fossila sniglar som för närvarande finns på Sedgwick-museet är ofullständig. Detta är ett tillstånd som uppkommit delvis på grund av inkomplett insamling. Fördelningen av ärr orsakade av misslyckad predation förväntades följa en poissonfördelning. Denna förutsägelse motsägs sannerligen av nuvarande data. Troligtvis har detta förorsakats av en låg ”miss- lyckad predationsfrekvens”, vilket antyder att graden av predation inte är konstant. Sniglar av en större storlek saknar ärr på den övre delen av sina skal, vilket tyder på att frekvensen av misslyckad predation var låg i de juvenila stadierna. (Översättning: Mohammed Bazzi) Nyckelord: Predation, tafonomi, provtagning snedhet, paleobiologi, snäckor, populationsfördelning Examensarbete E1 i geovetenskap, 1GV025, 30 hp Handledare: Graham Budd Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, Nr 384, 2016 Hela publikationen finns tillgänglig på www.diva-portal.org Table of Contents 1. Introduction 1 1.1. Distribution of Scars 2 1.2. Biases 4 2. Aims 5 3. Background 6 3.1. Geological and Ecological Background 6 3.2. Previous work 7 3.2.1. Previous work on transfer of living to fossil population 7 3.2.2. Previous work on taphonomic biases 8 3.2.3. Previous work on collection 11 3.2.4. Previous work on failed predation scars in marine gastropods 13 4. Methodology 14 4.1. Previous Collections 14 4.2. Fieldwork Collection 14 4.3. Collection Strategy 14 4.4. Measurements 16 4.5. Glycimeris Collection 16 4.6. Statistical Methods 18 5. Results 19 5.1. General Results 19 5.2. Size distribution 19 5.3. Scar-frequency Distributions 27 6. Discussion 31 6.1. Methodology 31 6.2. Bias 31 6.2.1. Taphonomic bias 31 6.2.2. Collection bias 32 6.3. Scar frequency distribution 34 Table of Contents (cont.) 6.3.1. Unsuccessful predation 34 7. Conclusion 36 8. Acknowledgements 37 Appendix 1. χ2 Test Calculation 43 Appendix 2. Calculation Data Tables 44 Appendix 3. Data Tables 54 Appendix 4. Supplementary Data Presentation 68 Appendix 5. Supplementary Photographs 69 1. Introduction The intention of this project is to assess the magnitude and incidence of predation in a single species within a single time period of 400kyr (Head 1998) of the fossil record, in order to test assumptions regarding the impact of predation as a driving mechanism in evolution. To do this it is also necessary to assess the magnitude of biases, both taphonomic and collection, for the specific species. Fossil populations provide a good basis for studying patterns in evolution (Smith 2009). The aims of this study are firstly to look at evidence predation in the fossil record; and secondly to examine the biases which occur within museum collections and within the fossil record. This study will compare museum collection size distributions and structure with those of a new field collection. Predation has been assumed to be an important factor in evolutionary radiation and population control (Vermeij 1987, Hairston et al. 1960) and in driving evolutionary radiations within the geological record itself. In order to better understand the magnitude of this factor and the intensity of predation in the geological past, it is first necessary to be able to recognise the levels of predation that have occurred. This can be complicated because successful predation is unlikely to leave remains amenable to fossilisation: hard parts are disarticulated during by predation strategies which greatly reduces the probability of fossilisation (Brett and Thomka 2013). Some specific predation strategies manifest this problem to a lesser extent and make preservation is more likely, thus enabling a fossil record of them. Forms of predation that have an increased likelihood to lead to successful fossilisation include boring and drilling by naticid gastropods and peeling carried out by brachyuran decapods – durophagous crabs – on coiled gastropods when unsuccessful. Boring and peeling predation strategies do not guarantee preservation, but do increase the likelihood of preservation of evidence of predation. A count of the abundance of predators does not give an accurate picture of predation intensity due to the ecologically lower abundance and poor preservation potential of predators (Leighton 2002). Gastropods conveniently have their life history recorded by their shells. In the peeling method of attack on gastropods (Bertness & Cunningham 1981), durophagous crabs use the dactyl surface of the claw to remove pieces of the shell from the gastropod aperture margin (see Figure 1, Keen & Coan 1971). Should the crab be interrupted before it can reach the mantle of the gastropod, which retreats as far into the posterior of the shell as possible during an attack, then the gastropod will survive. Subsequently the surviving gastropod may be able to repair the injury and leave a prominent interruption and indentation (see Figure 1) in the whorl; this forms a characteristic scar (Alexander and Dietl 2003). 1 1cm 2cm Figure 1, after Keen & Coan (1971) Descriptive illustration of external features of gastropod shell, Examples of Neptunea contraria highlighting in red a scar; from own fieldwork The assumption is that the recoverable information of unsuccessful predation frequency correlates with the unrecoverable information of successful predation frequency in some
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages80 Page
-
File Size-