Investigation of Differences in Ansys Solvers CFX and Fluent

Investigation of Differences in Ansys Solvers CFX and Fluent

Investigation of Differences in Ansys Solvers CFX and Fluent Rutvika Acharya [email protected] Master thesis in Fluid Dynamics, Mechanics Institution Advisor: KTH: Mihai Mihaescu Siemens Industrial Turbomachinery AB: Daniel Lörstad Royal Institute of Technology, KTH Stockholm, June 2016 Rutvika Acharya 940107-2609 2016-06-17 Abstract This thesis aims at presenting Computational Fluid Dynamics studies conducted on an axisymmetric model of the Siemens SGT-800 burner using Ansys Fluent, Ansys CFX and Ansys ICEM. The goal is to perform a mesh study and turbulence model study for isothermal flow. The result will show the differences observed while using the two solvers by Ansys, Fluent and CFX. Two different meshes, A, coarse and B, optimal have been used for the mesh study. This will reveal the mesh dependency of the different parameters and if any differences are observed between the solver’s convergence and mesh independency performance. To further validate the mesh independency, a simplified test case is simulated for turbulent flow for 32 different cases testing the numerical algorithms and spatial discretization available in Ansys Fluent and finding the optimal method to achieve convergence and reliable results. Turbulence model study has been performed where k-ε, k-ω and k-ω Shear Stress Transport (SST) model have been simulated and the results between solvers and models are compared to see if the solvers’ way of handling the different models varies. Studies from this thesis suggest that both solvers implement the turbulence models differently. Out of the three models compared, k-ω SST is the model with least differences between solvers. The solution looks alike and therefore it could be suggested to use this model, whenever possible, for future studies when both solvers are used. For the models k-ε and k-ω significant differences were found between the two solvers when comparing velocity, pressure and turbulence kinetic energy. Different reasons for its occurrence are discussed in the thesis and also attempts have been made to rule out few of the reasons to narrow down the possible causes. One of the goals of the thesis was to also discuss the differences in user-interface and solver capabilities which have been presented in the conclusions and discussions section of the report. Questions that still remain unanswered after the thesis are why these differences are present between solvers and which of the solvers’ results are more reliable when these differences have been found. 2 Rutvika Acharya 940107-2609 2016-06-17 Abstract ......................................................................................................................................................... 2 Introduction ................................................................................................................................................... 5 1 Background ........................................................................................................................................... 6 1.1 Project Objectives ......................................................................................................................... 6 1.2 Siemens Industrial turbomachinery .............................................................................................. 6 1.3 SGT-800 ........................................................................................................................................ 6 1.4 Atmospheric Combustion Rig (ACR) ........................................................................................... 7 2 Theory ................................................................................................................................................... 9 2.1 Fluid Dynamics – Governing equations ........................................................................................ 9 2.2 Turbulent Flow ............................................................................................................................ 10 2.3 Two-equation model ................................................................................................................... 11 2.3.1 Standard k-ε model ............................................................................................................. 11 2.3.2 Standard k-ω model ............................................................................................................ 12 2.3.3 k- ω Shear Stress Transport (SST) model ........................................................................... 12 3 Solver Characteristics: Ansys CFX and Ansys Fluent ........................................................................ 14 3.1.1 Discretization method ......................................................................................................... 14 3.1.2 Turbulence models in CFX and Fluent ............................................................................... 15 3.1.2.1 Standard k-ε model ......................................................................................................... 15 3.1.2.2 Standard k-ω model ........................................................................................................ 16 3.1.2.3 Shear Stress Transport k-ω model................................................................................... 17 4 Methodology ....................................................................................................................................... 19 4.1 Case-setup ................................................................................................................................... 19 4.1.1 Geometry and Mesh ............................................................................................................ 19 4.1.1.1 SGT-800 burner .............................................................................................................. 19 4.1.1.2 Numeric’s test case – Flow in channel with object ......................................................... 20 4.1.2 Boundary Conditions .......................................................................................................... 21 4.1.2.1 SGT-800 burner .............................................................................................................. 21 4.1.2.2 Test case .......................................................................................................................... 22 4.1.3 Turbulence model ............................................................................................................... 23 4.1.4 Solution method .................................................................................................................. 23 4.1.4.1 SGT-800 burner .............................................................................................................. 23 4.1.4.2 Test case .......................................................................................................................... 24 5 Results ................................................................................................................................................. 25 3 Rutvika Acharya 940107-2609 2016-06-17 5.1 Test case ...................................................................................................................................... 25 5.2 Cold flow: No combustion .......................................................................................................... 28 5.2.1 Mesh study .......................................................................................................................... 28 5.2.2 Turbulence model study ...................................................................................................... 31 5.2.2.1 k-ω SST ........................................................................................................................... 31 5.2.2.2 k-ε.................................................................................................................................... 33 5.2.2.3 k-ω ................................................................................................................................... 37 6 Conclusion and Further Discussion .................................................................................................... 41 6.1 CFX vs FLUENT: User experience ............................................................................................ 41 6.2 Investigation of differences between the solver results .............................................................. 41 7 Future scope ........................................................................................................................................ 43 References ................................................................................................................................................... 44 Appendix ..................................................................................................................................................... 46 4 Rutvika Acharya 940107-2609 2016-06-17 Introduction Fluid dynamics is the study of fluid flow while Computational Fluid Dynamics (CFD) deals with solving complex fluid flow problems with the help of numerical methods. CFD has gained its popularity with years and is implemented on all kinds of problems from designing vehicles and improving their aerodynamic characteristics to medical applications like curing arterial diseases to weather forecasting. Increase

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    48 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us