Beam Analysis Using the Stiffness Method

Beam Analysis Using the Stiffness Method

BEAM ANALYSIS USING THE STIFFNESS METHOD ! Development: The Slope-Deflection Equations ! Stiffness Matrix ! General Procedures ! Internal Hinges ! Temperature Effects ! Force & Displacement Transformation ! Skew Roller Support 1 Slope – Deflection Equations i P j k w Cj settlement = ∆j i P j M w ij Mji θi θ ψ j 2 • Degrees of Freedom M θΑ A B 1 DOF: θΑ L P θΑ B θ θ A C 2 DOF: Α , Β θΒ 3 • Stiffness Definition k kAA 1 BA A B L 4EI k = AA L 2EI k = BA L 4 k kAB BB A 1 B L 4EI k = BB L 2EI k = AB L 5 • Fixed-End Forces Fixed-End Forces: Loads P PL L/2 L/2 PL 8 8 L P P 2 2 w wL2 wL2 12 12 L wL wL 2 2 6 • General Case i P j k w Cj settlement = ∆j i P j M w ij Mji θi ψ θj 7 P i w j Mij Mji θi L settlement = ∆ θ j ψ j 4EI 2EI 2EI 4EI θi + θ j = M M = θ + θ L L ij ji L i L j θj θi + F (M ij) F ∆ (M ji)∆ settlement = ∆ + j P w F (MF ) (M ij)Load ji Load 4EI 2EI F F 2EI 4EI F F M = ( )θ + ( )θ + (M ij ) + (M ij ) , M = ( )θ + ( )θ + (M ji ) + (M ji ) ij L i L j ∆ Load ji L i L j ∆ Load 8 • Equilibrium Equations i P j k w Cj C Mji j Mjk Mji Mjk j + ΣM j = 0 : − M ji − M jk + C j = 0 9 • Stiffness Coefficients Mij i j Mji L θj θi 4EI kii = 2EI L k ji = ×θi L 1 + 2EI kij = 4EI L k = ×θ j jj L 1 10 • Matrix Formulation 4EI 2EI F M = ( )θ + ( )θ + (M ij ) ij L i L j 2EI 4EI F M = ( )θ + ( )θ + (M ji ) ji L i L j F M ij (4EI / L) (2EI / L) θiI M ij = + F M (2EI / L) (4EI / L) θ ji j M ji kii kij []k = k ji k jj Stiffness Matrix 11 P i w j Mij Mji θi [M ] = [K][θ ]+[FEM ] L θ ([M ]−[FEM ]) = [K][θ ] ψ j ∆j [θ ] = [K]−1[M ]−[FEM ] Mij Mji θj θi Fixed-end moment + Stiffness matrix matrix F (M ij) F ∆ (M ji)∆ [D] = [K]-1([Q] - [FEM]) + Displacement Force matrix F P F (M ij)Load w (M ji)Load matrix 12 • Stiffness Coefficients Derivation M Mi θi j Real beam i j L M i + M j M i + M j L L L/3 M j L M j 2EI EI Conjugate beam M i EI M i L 2EI θι M L L M L 2L From(1)and (2); + ΣM ' = 0 : − ( i )( ) + ( j )( ) = 0 i 2EI 3 2EI 3 4EI M i = ( )θi M i = 2M j − − − (1) L 2EI M i L M j L M j = ( )θi + ↑ ΣFy = 0 : θi − ( ) + ( ) = 0 − − − (2) L 2EI 2EI 13 • Derivation of Fixed-End Moment Point load P Real beam Conjugate beam A B ABL M M M EI EI M EI ML M 2EI M ML EI 2EI P PL2 PL PL2 16EI 4EI 16EI ML ML 2PL2 PL + ↑ ΣF = 0 : − − + = 0, M = y 2EI 2EI 16EI 8 14 P PL PL 8 L 8 P P P/2 2 2 P/2 PL/8 -PL/8 -PL/8 - -PL/8 -PL/16 - -PL/16 -PL/8 − PL − PL PL PL PL/4 + + = + 16 16 4 8 15 Uniform load w Real beam Conjugate beam A B ABL M M M EI EI M EI ML M 2EI M ML EI 2EI 2 wL3 wL wL3 w 24EI 8EI 24EI ML ML 2wL3 wL2 + ↑ ΣF = 0 : − − + = 0, M = y 2EI 2EI 24EI 12 16 Settlements M M Mi = Mj Real beam j Conjugate beam EI L A B M + M ∆ ∆ i j M L M i + M j M EI L M ML EI ML 2EI 2EI M M EI ∆ ML L ML 2L + ΣM = 0 : − ∆ − ( )( ) + ( )( ) = 0, B 2EI 3 2EI 3 6EI∆ M = L2 17 C • Typical Problem B P P1 w 2 A C B L1 L2 2 wL 2 PL P PL w wL 12 8 8 12 L L 0 4EI 2EI P1L1 M AB = θ A + θ B + 0 + L1 L1 8 0 2EI 4EI P1L1 M BA = θ A + θ B + 0 − L1 L1 8 0 2 4EI 2EI P2 L2 wL2 M BC = θ B + θC + 0 + + L2 L2 8 12 0 2 2EI 4EI − P2 L2 wL2 M CB = θ B + θC + 0 + − L2 L2 8 12 18 C B P P1 w 2 A C B L1 L2 C MBA B MBC B 2EI 4EI P1L1 M BA = θ A + θ B + 0 − L1 L1 8 2 4EI 2EI P2 L2 wL2 M BC = θ B + θC + 0 + + L2 L2 8 12 + ΣM B = 0 : CB − M BA − M BC = 0 → Solve for θ B 19 C B P P1 w 2 M M BA AB C A MCB M B BC L1 L2 Substitute θB in MAB, MBA, MBC, MCB 0 4EI 2EI P1L1 M AB = θ A + θ B + 0 + L1 L1 8 0 2EI 4EI P1L1 M BA = θ A + θ B + 0 − L1 L1 8 0 2 4EI 2EI P2 L2 wL2 M BC = θ B + θC + 0 + + L2 L2 8 12 0 2 2EI 4EI − P2 L2 wL2 M CB = θ B + θC + 0 + − L2 L2 8 12 20 C B P P1 w 2 MBA MAB MCB A MBC C Ay B L1 L2 Cy By = ByL + ByR B C P P 1 M 2 B BA MCB MAB A MBC A ByR C y ByL y L1 L2 21 Stiffness Matrix • Node and Member Identification • Global and Member Coordinates • Degrees of Freedom •Known degrees of freedom D4, D5, D6, D7, D8 and D9 • Unknown degrees of freedom D1, D2 and D3 6 9 5 3 8 2EI 2 EI 2 1 4 1 21 3 7 22 Beam-Member Stiffness Matrix i j 1 4 3 6 E, I, A, L 2 5 k41 k14 AE/L = k k11 = AE/L AE/L AE/L 44 d1 = 1 d4 = 1 12 3 45 6 1 AE/L - AE/L 2 0 0 [k] = 3 0 0 4 -AE/L AE/L 5 0 0 6 0 0 23 i j 1 4 3 6 6EI/L2 = k E, I, A, L 32 2 2 5 6EI/L = k65 2 2 k62 = 6EI/L 6EI/L = k35 d2 = 1 d5 = 1 3 3 12EI/L = k52 12EI/L = k25 k = 12EI/L3 3 22 12EI/L = k55 12 3 45 6 1 AE/L 0 - AE/L 0 2 0 12EI/L3 0 - 12EI/L3 [k] = 3 0 6EI/L2 0 - 6EI/L2 4 -AE/L0 AE/L 0 5 0 -12EI/L3 0 12EI/L3 6 0 6EI/L2 0 - 6EI/L2 24 i j 1 4 3 6 E, I, A, L 2 5 k33 = 4EI/L = k 2EI/L = k63 = k 4EI/L 66 d3 = 1 2EI/L 36 d6 = 1 k = 2 2 2 2 23 6EI/L 6EI/L = k53 k26 = 6EI/L 6EI/L = k56 12 3 45 6 1 AE/L 0 0 - AE/L 0 0 2 0 12EI/L3 6EI/L2 0 - 12EI/L3 6EI/L2 [k] = 3 0 6EI/L2 4EI/L 0 - 6EI/L2 2EI/L 4 -AE/L0 0 AE/L 0 0 5 0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2 6 0 6EI/L2 2EI/L 0 - 6EI/L2 4EI/L 25 • Member Equilibrium Equations i j Fxi F M xj i Mj E, I, A, L F = yi Fyj AE/L AE/L AE/L AE/L x δi x δj 1 1 + + 6EI/L2 6EI/L2 6EI/L2 6EI/L2 1 1 x ∆i x ∆j 3 3 3 12EI/L 12EI/L + 12EI/L + 12EI/L3 4EI/L 1 2EI/L 2EI/L 4EI/L x θi x θj 1 + 6EI/L2 6EI/L2 6EI/L2 2 FF 6EI/L F yi FFF FFF yj FFF FF xi xj M ii FF M jj 26 F Fxi = (AE / L)δ i + (0)∆i (0)θi + (−AE / L)δ j + (0)∆j + (0)θ j + Fxi 3 2 3 2 F Fyi = (0)δ i + (12EI / L )∆i (6EI / L )θi (0)δ j (−12EI / L )∆j (6EI / L )θ j Fyi 2 2 F Mxi = (0)δ i (6EI / L )∆i (4EI / L)θi (0)δ j (−6EI / L )∆j (2EI / L)θ j Mi F Fxj = (−AE / L)δ i (0)∆i (0)θi (AE / L)δ j (0)∆j (0)θ j Fxi 3 2 2 F Fyj = (0)δ i (−12EI / L )∆i (−6EI / L )θi (0)δ j (0)∆j (−6EI / L )θ j Fyj 2 2 F Mj = (0)δ i (6EI / L )∆i (2EI / L)θi (0)δ j (−6EI / L )∆j (4EI / L)θ j Mj F Fxi AE/L 0 0 − AE/L 0 0 δ i Fxi 3 2 3 2 F F 0 12EI/L 6EI/L 0 −12EI/L 6EI/L ∆ F yj i yi 2 2 F Mi 0 6EI/L 4EI/L 0 − 6EI/L 2EI/L θ i Mi = + F δ F xj − AE/L 0 0 AE/L 0 0 j Fxj F 0 −12EI/L3 − 6EI/L2 0 12EI/L3 − 6EI/L2 ∆ F F yj j yi M 2 2 θ F j 0 6EI/L 2EI/L 0 − 6EI/L 4EI/L j M j Stiffness matrix Fixed-end force matrix [q] = [k][d] + [qF] End-force matrix Displacement matrix 27 6x6 Stiffness Matrix δi ∆i θi δj ∆j θj Ni AE/L 0 0 − AE/L 0 0 V 3 2 3 2 i 0 12EI/L 6EI/L 0 −12EI/L 6EI/L 2 2 Mi 0 6EI/L 4EI/L 0 − 6EI/L 2EI/L []k 6×6 = Nj − AE/L 0 0 AE/L 0 0 3 2 3 2 Vj 0 −12EI/L − 6EI/L 0 12EI/L − 6EI/L 2 2 Mj 0 6EI/L 2EI/L 0 − 6EI/L 4EI/L 4x4 Stiffness Matrix ∆i θi ∆j θj 3 2 3 2 Vi 12EI/L 6EI/L −12EI/L 6EI/L M 6EI/L2 4EI/L − 6EI/L2 2EI/L []k = i 4×4 3 2 3 2 Vj −12EI/L − 6EI/L 12EI/L − 6EI/L 2 2 Mj 6EI/L 2EI/L − 6EI/L 4EI/L 28 2x2 Stiffness Matrix θi θj Mi 4EI / L 2EI / L []k 2×2 = Mj 2EI / L 4EI / L Comment: - When use 4x4 stiffness matrix, specify settlement.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    148 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us