Useful Identities and Theorems from Vector Calculus

Useful Identities and Theorems from Vector Calculus

Appendix A Useful Identities and Theorems from Vector Calculus A.1 Vector Identities A · (B × C) = C · (A × B) = B · (C × A) A × (B × C) = B(A · C) − C(A · B) (A × B) × C = B(A · C) − A(B · C) ∇×∇f = 0 ∇·(∇×A) = 0 ∇·( f A) = (∇ f ) · A + f (∇·A) ∇×( f A) = (∇ f ) × A + f (∇×A) ∇·(A × B) = B · (∇×A) − A · (∇×B) ∇(A · B) = (B ·∇)A + (A ·∇)B + B × (∇×A) + A × (∇×B) ∇·(AB) = (A ·∇)B + B(∇·A) ∇×(A × B) = (B ·∇)A − (A ·∇)B − B(∇·A) + A(∇·B) ∇×(∇×A) =∇(∇·A) −∇2 A A.2 The Gradient Theorem For two points a, b in a space where a scalar function f with spatial derivatives everywhere well-defined up to first order, b (∇ f ) · d = f (b) − f (a), a independently of the integration path between a and b. P. Charbonneau, Solar and Stellar Dynamos, Saas-Fee Advanced Course 39, 215 DOI: 10.1007/978-3-642-32093-4, © Springer-Verlag Berlin Heidelberg 2013 216 Appendix A: Useful Identities and Theorems from Vector Calculus A.3 The Divergence Theorem For any vector field A with spatial derivatives of all its scalar components everywhere well-defined up to first order, (∇·A)dV = A · nˆ dS , V S where the surface S encloses the volume V . A.4 Stokes’ Theorem For any vector field A with spatial derivatives of all its scalar components everywhere well-defined up to first order, (∇×A) · nˆ dS = A · d , S γ where the contour γ delimits the surface S, and the orientation of the unit nor- mal vector nˆ and direction of contour integration are mutually linked by the right-hand rule. A.5 Green’s Identities For any two scalar functions φ and ψ defined over a volume V bounded by a surface S and with spatial derivatives well-defined up to second order, (φ∇2ψ +∇φ ·∇ψ)dV = φ(∇ψ) · nˆ dS , V S and (φ∇2ψ − ψ∇2φ)dV = (φ∇ψ − ψ∇φ) · nˆ dS . V S These are known respectively as Green’s first and second identities, the latter often simply referred to as Green’s theorem. Appendix B Coordinate Systems and the Fluid Equations This Appendix is adapted in part from Appendix B of the book by Jean-Louis Tassoul (1978) given in the bibliography to this appendix with a number of addi- tions, including the MHD induction equation, expressions for the operators u ·∇ and ∇2 acting on a vector field, and for the divergence of a second rank tensor. Note also, in Sects.B.1.5 and B.2.5, the quantities in square brackets correspond to the components of the deformation tensor D jk = (1/2)(∂ j uk + ∂ku j ). B.1 Cylindrical Coordinates (s, φ, z) Fig. B.1 Geometric defin- ition of cylindrical coordi- nates. The coordinate ranges are s ∈[0, ∞], φ ∈[0, 2π], z ∈[−∞, ∞]. The cylindrical radius s is measured perpen- dicularly from the cartesian z-axis. The zero point of the azimuthal angle φ is on the cartesian x-axis. The local unit vector triad is oriented such that eˆz = eˆs × eˆφ. P. Charbonneau, Solar and Stellar Dynamos, Saas-Fee Advanced Course 39, 217 DOI: 10.1007/978-3-642-32093-4, © Springer-Verlag Berlin Heidelberg 2013 218 Appendix B: Coordinate Systems and the Fluid Equations B.1.1 Conversion to Cartesian Coordinates x = s cos φ, y = s sin φ, s = x2 + y2, φ = atan(y/x), z = z. eˆx = cos φ eˆs − sin φ eˆφ, eˆy = sin φ eˆs + cos φ eˆφ, eˆs = cos φ eˆx + sin φ eˆy, eˆφ =−sin φ eˆx + cos φ eˆy, eˆz = eˆz . B.1.2 Infinitesimals d = dseˆs + sdφ eˆφ + dz eˆz dV = s ds dφ dz B.1.3 Vector Operators D ∂ ∂ uφ ∂ ∂ = + u + + u Dt ∂t s ∂s s ∂φ z ∂z ∂ f 1 ∂ f ∂ f ∇ f = eˆ + eˆφ + eˆ ∂ s ∂φ ∂ z s s z uφ Aφ uφ As (u ·∇)A = u ·∇A − eˆ + u ·∇Aφ + eˆφ + (u ·∇A ) eˆ s s s s z z 1 ∂ 1 ∂ Aφ ∂ A ∇·A = (sA ) + + z ∂ s ∂φ ∂ s s s z 1 ∂ A ∂ Aφ ∇×A = z − eˆ ∂φ ∂ s s z ∂ As ∂ Az 1 ∂(sAφ) ∂ As + − eˆφ + − eˆ ∂z ∂s s ∂s ∂φ z 1 ∂ ∂ 1 ∂2 ∂2 ∇2 = s + + ∂ ∂ 2 ∂φ2 ∂ 2 s s s s z A 2 ∂ Aφ ∇2 A = ∇2 A − s − eˆ s 2 2 ∂φ s s s ∂ 2 Aφ 2 As 2 + ∇ Aφ − + eˆφ + ∇ A eˆ s2 s2 ∂φ z z Appendix B: Coordinate Systems and the Fluid Equations 219 B.1.4 The Divergence of a Second-Order Tensor 1 ∂(sT ) 1 ∂Tφ ∂T Tφφ [∇ · T] = ss + s + zs − s s ∂s s ∂φ ∂z s 1 ∂(sTsφ) 1 ∂Tφφ ∂Tzφ Tφs [∇ · T]φ = + + + s ∂s s ∂φ ∂z s 1 ∂(sT ) 1 ∂Tφ ∂T [∇ · T] = sz + z + zz z s ∂s s ∂φ ∂z B.1.5 Components of the Viscous Stress Tensor ∂us 2 τss = 2μ + ζ − μ ∇·u ∂s 3 1 ∂uφ us 2 τφφ = 2μ + + ζ − μ ∇·u s ∂φ s 3 ∂uz 2 τzz = 2μ + ζ − μ ∇·u ∂z 3 1 1 ∂us ∂ uφ τ φ = τφ = 2μ + s s s 2 s ∂φ ∂s s 1 ∂uφ 1 ∂uz τφ = τ φ = 2μ + z z 2 ∂z s ∂φ 1 ∂uz ∂us τzs = τsz = 2μ + 2 ∂s ∂z B.1.6 Equations of Motion u2 ∂Φ ∂ ∂ ∂ Dus − φ =− − p + Bz Bs − Bz Dt s ∂s ∂s μ0 ∂z ∂s Bφ ∂(sBφ) ∂ Bs 1 ∂ 1 ∂τsφ ∂τsz τφφ − − + (sτss) + + − μ0s ∂s ∂φ s ∂s s ∂φ ∂z s Duφ uφu ∂Φ ∂ ∂(sBφ) ∂ + s =− − 1 p + Bs − Bs Dt s s ∂φ s ∂φ μ0s ∂s ∂φ Bz 1 ∂ Bz ∂ Bφ 1 ∂ 1 ∂τφφ ∂τφz τsφ − − + (sτφs) + + + μ0 s ∂φ ∂z s ∂s s ∂φ ∂z s 220 Appendix B: Coordinate Systems and the Fluid Equations ∂Φ ∂ Bφ ∂ ∂ Bφ Duz =− − p + 1 Bz − Dt ∂z ∂z μ0 s ∂φ ∂z Bs ∂ Bs ∂ Bz 1 ∂ 1 ∂τzφ ∂τzz − − + (sτzs) + + μ0 ∂z ∂s s ∂s s ∂φ ∂z B.1.7 The Energy Equation Ds 1 ∂ ∂T 1 ∂ ∂T ∂ ∂T T = Φν + Φη + χs + χ + χ Dt s ∂s ∂s s2 ∂φ ∂φ ∂z ∂z 2 2 2 2 2 2 2 2 Φν = 2μ(D + Dφφ + D + 2D φ + 2Dφ + 2D ) + (ζ − μ)(∇·u) ss zz s z zs 3 2 2 2 η 1 ∂ Bz ∂ Bφ ∂ Bs ∂ Bz 1 ∂(sBφ) ∂ Bs Φη = − + − + − 2 μ0 s ∂φ ∂z ∂z ∂s s ∂s ∂φ B.1.8 The MHD Induction Equation ∂ Bs 1 ∂ ∂ = u Bφ − uφ B − (u B − u B ) ∂t s ∂φ s s ∂z z s s z ∂η ∂(sBφ) ∂ ∂η ∂ ∂ − 1 − Bs + Bs − Bz s2 ∂φ ∂s ∂φ ∂z ∂z ∂s B 2 ∂ Bφ + η ∇2 B − s − s s2 s2 ∂φ ∂ Bφ ∂ ∂ = uφ B − u Bφ − u Bφ − uφ B ∂t ∂z z z ∂s s s ∂η ∂ ∂ Bφ ∂η ∂(sBφ) ∂ − 1 Bz − + 1 − Bs ∂z s ∂φ ∂z s ∂s ∂s ∂φ ∂ 2 Bφ 2 Bs + η ∇ Bφ − + s2 s2 ∂φ ∂ Bz 1 ∂ 1 ∂ = (su B − su B ) − uφ B − u Bφ ∂t s ∂s z s s z s ∂φ z z ∂η ∂ B ∂ B 1 ∂η 1 ∂ B ∂ Bφ − s − z + z − + η ∇2 B ∂s ∂z ∂s s ∂φ s ∂φ ∂z z Appendix B: Coordinate Systems and the Fluid Equations 221 B.2 Spherical Coordinates (r, θ, φ) Fig. B.2 Geometric defini- tion of polar spherical coordi- nates. The coordinate ranges are r ∈[0, ∞], θ ∈[0, π], φ ∈[0, 2π]. The zero point of the azimuthal angle φ is on the cartesian x-axis and the zero point of the polar angle θ (sometimes called colatitude) is on the cartesian z-axis. Note that in so-called geographical coordinates, longitude ≡ φ, but latitude ≡ π/2 − θ.The local unit vector triad is ori- ented such that eˆr = eˆθ × eˆφ. B.2.1 Conversion to Cartesian Coordinates x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. r = x2 + y2 + z2, θ = atan x2 + y2/z , φ = atan(y/x). eˆx = sin θ cos φ eˆr + cos θ cos φ eˆθ − sin φ eˆφ, eˆy = sin θ sin φ eˆr + cos θ sin φ eˆθ + cos φ eˆφ, eˆz = cos θ eˆr − sin θ eˆθ. eˆr = sin θ cos φ eˆx + sin θ sin φ eˆy + cos θ eˆz, eˆθ = cos θ cos φ eˆx + cos θ sin φ eˆy − sin θ eˆz, eˆφ =−sin φ eˆx + cos φ eˆy. B.2.2 Infinitesimals d = dreˆr + rdθeˆθ + r sin θdφeˆφ dV = r 2 sin θ dr dθ dφ 222 Appendix B: Coordinate Systems and the Fluid Equations B.2.3 Vector Operators D ∂ ∂ uθ ∂ uφ ∂ = + ur + + Dt ∂t ∂r r ∂θ r sin θ ∂φ ∂ f 1 ∂ f 1 ∂ f ∇ f = eˆ + eˆθ + eˆφ ∂ r ∂θ θ ∂φ r r r sin uθ Aθ uφ Aφ (u ·∇)A = u ·∇Ar − − eˆr r r uφ Aφ uθ Ar + u ·∇Aθ − cot θ + eˆθ r r uφ Ar uφ Aθ + u ·∇Aφ + + cot θ eˆφ r r ∂ ∂( θ) ∂ 1 2 1 Aθ sin 1 Aφ ∇·A = (r Ar ) + + r 2 ∂r r sin θ ∂θ r sin θ ∂φ 1 ∂(Aφ sin θ) ∂ Aθ ∇×A = − eˆ θ ∂θ ∂φ r r sin 1 ∂ Ar ∂(Aφr sin θ) 1 ∂(rAθ) ∂ Ar + − eˆθ + − eˆφ r sin θ ∂φ ∂r r ∂r ∂θ 1 ∂ ∂ 1 ∂ ∂ 1 ∂2 ∇2 = r 2 + sin θ + r 2 ∂r ∂r r 2 sin θ ∂θ ∂θ r 2 sin2 θ ∂φ2 2A 2 ∂ Aθ sin θ 2 ∂ Aφ ∇2 A = ∇2 A − r − − eˆ r 2 2 θ ∂θ 2 θ ∂φ r r r sin r sin ∂ θ ∂ 2 2 Ar Aθ 2 cos Aφ + ∇ Aθ + − − eˆθ 2 ∂θ 2 2 θ 2 2 θ ∂φ r r sin r sin ∂ θ ∂ 2 2 Ar 2 cos Aθ Aφ + ∇ Aφ + + − eˆφ r 2 sin θ ∂φ r 2 sin2 θ ∂φ r 2 sin2 θ B.2.4 The Divergence of a Second-Order Tensor 2 1 ∂(r Trr) 1 ∂(Tθr sin θ) 1 ∂Tφr Tθθ + Tφφ [∇ · T]r = + + − r 2 ∂r r sin θ ∂θ r sin θ ∂φ r 2 1 ∂(r Trθ) 1 ∂(Tθθ sin θ) 1 ∂Tφθ Tθr Tφφ cot θ [∇ · T]θ = + + + − r 2 ∂r r sin θ ∂θ r sin θ ∂φ r r 2 1 ∂(r Trφ) 1 ∂(Tθφ sin θ) 1 ∂Tφφ Tφr Tφθ cot θ [∇ · T]φ = + + + + r 2 ∂r r sin θ ∂θ r sin θ ∂φ r r Appendix B: Coordinate Systems and the Fluid Equations 223 B.2.5 Components of the Viscous Stress Tensor ∂u 2 τ = μ r + ζ − μ ∇·u rr 2 ∂ r 3 1 ∂uθ ur 2 τθθ = μ + + ζ − μ ∇·u 2 ∂θ r r 3 1 ∂uφ ur uθ cot θ 2 τφφ = μ + + + ζ − μ ∇·u 2 θ ∂φ r sin r r 3 1 1 ∂ur ∂ uθ τ θ = τθ = μ + r r r 2 ∂θ ∂ 2 r r r ∂ θ θ ∂ uφ τ = τ = μ 1 1 u + sin θφ φθ 2 θ ∂φ ∂θ θ 2 r sin r sin 1 ∂ uφ 1 ∂ur τφ = τ φ = 2μ r + r r 2 ∂r r r sin θ ∂φ B.2.6 Equations of Motion u2 + u2 ∂Φ ∂ Dur − θ φ =− − p Dt r ∂r ∂r Bφ ∂ Br ∂ Bθ ∂(rBθ) ∂ Br + − Bφr θ − − μ θ ∂φ ∂ sin μ ∂ ∂θ 0r sin r 0r r θ ∂ ∂ ∂τ τ + τ 1 sin 2 rφ θθ φφ + (r τrr) + (τ θ sin θ) + − r sin θ r ∂r ∂θ r ∂φ r u2 cot θ ∂Φ ∂ Duθ + ur uθ − φ =− − 1 p Dt r r r ∂θ r ∂θ ∂( θ) ∂ Bφ ∂(Bφ sin θ) ∂ θ + Br rB − Br − − B μ ∂ ∂θ μ θ ∂θ ∂φ 0r r 0r sin θ ∂ ∂ ∂τ τ τ θ 1 sin 2 θφ rθ φφ cot + (r τθ ) + (τθθ sin θ) + + − r sin θ r ∂r r ∂θ ∂φ r r Duφ u uφ uθuφ cot θ ∂Φ ∂ + r + =− − 1 p θ ∂φ θ ∂φ Dt r r r sin rsin θ ∂(Bφ sin θ) ∂ θ ∂ ∂(Bφr sin θ) + B − B − Br Br − μ θ ∂θ ∂φ μ θ ∂φ ∂ 0r sin 0r sin r θ ∂ ∂ ∂τ τ τ θ 1 sin 2 φφ rφ θφ cot + (r τφ ) + (τφθ sin θ) + + + r sin θ r ∂r r ∂θ ∂φ r r 224 Appendix B: Coordinate Systems and the Fluid Equations B.2.7 The Energy Equation ∂ ∂ Ds 1 2 T T = Φν + Φη + χr 2 ∂ ∂ Dt r r r 1 ∂ ∂T 1 ∂ ∂T + χ sin θ + χ r 2 sin θ ∂θ ∂θ r 2 sin2 θ ∂φ ∂φ 2 2 2 2 2 2 2 2 Φν = 2μ(D + Dθθ + Dφφ + 2D θ + 2Dθφ + 2Dφ ) + ζ − μ (∇·u) rr r r 3 2 η ∂(Bφ sin θ) ∂ Bθ Φη = − 2 2 ∂θ ∂φ μ0r sin θ 2 2 ∂ B ∂(Bφr sin θ) ∂(rBθ) ∂ B + r − + sin2 θ − r ∂φ ∂r ∂r ∂θ B.2.8 The MHD Induction Equation ∂ Br 1 ∂ ∂ = ( θ (u Bθ − uθ B )) − uφ B − u Bφ ∂ θ ∂θ sin r r ∂φ r r t r sin ∂η ∂( θ) ∂ ∂η ∂ ∂(Bφr sin θ) − 1 rB − Br + 1 Br − 2 ∂θ ∂ ∂θ 2 2 θ ∂φ ∂φ ∂ r r r sin r ∂( θ) ∂ 2 2Br 2 Bθ sin 2 Bφ + η ∇ Br − − − r 2 r 2 sin θ ∂θ r 2 sin θ ∂φ ∂ Bθ 1 ∂ 1 ∂ = uθ Bφ − uφ Bθ − (ru Bθ − ruθ B ) ∂ θ ∂φ ∂ r r t r sin r r ∂η ∂(Bφ sin θ) ∂ θ ∂η ∂( θ) ∂ − 1 − B + 1 rB − Br 2 2 θ ∂φ ∂θ ∂φ ∂ ∂ ∂θ r sin r r r ∂ θ ∂ 2 2 Br Bθ 2 cos Bφ + η ∇ Bθ + − − r 2 ∂θ r 2 sin2 θ r 2 sin2 θ ∂φ ∂ Bφ 1 ∂ ∂ = ruφ B − ru Bφ − uθ Bφ − uφ Bθ ∂ ∂ r r ∂θ t r r ∂η ∂ ∂(Bφr sin θ) ∂η ∂(Bφ sin θ) ∂ θ − 1 Br − + 1 − B θ ∂ ∂φ ∂ 2 θ ∂θ ∂θ ∂φ r sin r r r sin ∂ θ ∂ 2 2 Br 2 cos Bθ Bφ + η ∇ Bφ + + − r 2 sin θ ∂φ r 2 sin2 θ ∂φ r 2 sin2 θ Appendix B: Coordinate Systems and the Fluid Equations 225 Bibliography For more on all this stuff, see Morse, P.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us