Properties of Combination Using Double Factorial

Properties of Combination Using Double Factorial

International Journal of Science and Research (IJSR) ISSN: 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 Properties of Combination Using Double Factorial G. Babu Assistant Professor, Department of Mathematics, Sri Akilandeshwari Women’s College Wandiwash Abstract: In this paper contains to calculation some combination formulae using the techniques of double factorial. Applying this concept I have find out and proved the results of combination which had been already calculated. Keywords: Combination, Factorial, Double factorial 1. Introduction Example: For n=10=2(5) The properties of combination is already proved using some 10‼ = 25 5! technique of factorial and sub factorial. In same concept I = 32 × 120 decided to verify and proved the properties of permutation = 3840 using this double factorial. For n=9=2(5)-1 10! 9‼ = 2. Basic Definitions 25 5! 3628800 = 2.1 Definition of Combination 3840 = 945 A permutation is an arrangement of all or part of a set of objects, where the order doesn’t matter. 3.1 Useful theorem Computing the number of combination of r objects chosen n! n! For any non negative integer n, then = n − 1 ‼ (or) from n objects is nCr = n!! r! n−r ! n! = n − 1 !! × n!! 2.2 Definition of factorial Proof Factorial says to multiply all whole numbers from the 1) If n is odd chosen number down to 1. The symbol is “! " The formula is n! n n − 1 n − 2 … … × 3 × 2 × 1 n! = n n − 1 n − 2 … … . .× 3 × 2 × 1 = n‼ n n − 2 n − 4 … … × 5 × 3 × 1 2.3 Definition of double factorial = n − 1 n − 3 … … × 4 × 2 = (n − 1)‼ The double factorial or semi factorial of a number n(denoted by n!! ) is the product of all the integers from 1 up to n that 2) If n is even n! n n − 1 n − 2 … … × 3 × 2 × 1 have the same parity (odd or even) as n. Formula is = n‼ n n − 2 n − 4 … … × 6 × 4 × 2 For n is even, then = n − 1 n − 3 … … × 3 × 1 n‼ = n n − 2 n − 4 … … × 6 × 4 × 2 = (n − 1)‼ For n is odd , then Combining this cases for any non negative integer n n! n‼ = n n − 2 n − 4 … … × 5 × 3 × 1 = n − 1 ‼ n!! Example: ⇔ n! = n − 1 !! × n!! 10‼ = 10 × 8 × 6 × 4 × 2 = 3840 Example 9‼ = 9 × 7 × 5 × 3 × 1 For n= 6 = 945 n! = 6! Note : As n! ! and not n!! = 6 × 5 × 4 × 3 × 2 × 1 = 720 3. Relation between factorial and double n − 1 ‼ × n‼ = 5‼ × 6‼ factorial = 5 × 3 × 1 × 6 × 4 × 2 = 720 For even n=2x, x≥ 0 then x Result 1 n‼ = 2 x! 0‼ = 1 and −1 ‼ = 1 For odd n=2x-1 , x≥ 1 then (2x)! n‼ = Proof 2x x! w.k.t n‼ = 2x x! Volume 7 Issue 12, December 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY Paper ID: ART20193805 10.21275/ART20193805 1183 International Journal of Science and Research (IJSR) ISSN: 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 0 0‼ = 2 0! Result 6 = 1 nCr = nCp then r = p or r + p = n Result 2 Proof: n‼ = n n − 2 ‼ n + 1 ‼ = (n + 1) n − 1 ‼ Example: 6‼ = 6 × 4‼ Equating (1) and (2) = 6 × 4 × 2‼ r‼ = p‼ then r=p or r+p=n = 6 × 4 × 2 = 48 Example: 6‼ × 5 ‼ Result 3 6C1 = n‼ × (n − 1)‼ 1‼ × 5 ‼ 0 ‼ × 4 ‼ nCr = 6 × 4 × 2 r‼ × (r − 1)‼ n − r − 1 ‼ × n − r ‼ = 4 × 2 = 6 Proof: n! 6‼ × 5 ‼ nC = 6C5 = r r! n − r ! 5‼ × 1 ‼ 4 ‼ × 0 ‼ 6 × 4 × 2 Since, n! = n − 1 !! × n!! = Therefore, 4 × 2 n‼ × (n − 1)‼ = 6 nCr = r‼ × (r − 1)‼ n − r − 1 ‼ × n − r ‼ Result 7 np nC = r Example: r r! 5‼ × 4‼ 5C = 2 2‼ × (1)‼ 2 ‼ × 3 ‼ Proof: 5 × 3 × 1 × 4 × 2 n‼ × n − 1 ‼ = nC = 2 × 1 × 2 × 3 r r‼ × r − 1 ‼ n − r − 1 ‼ × n − r ‼ = 10 np = r r‼ × r − 1 ‼ Result 4 npr = nC0 = nCn = 1 r! Proof: Example: n‼ × n − 1 ‼ 6‼ × 5‼ nC = 6C3 = r r‼ × r − 1 ‼ n − r − 1 ‼ × n − r ‼ 3‼ × 2‼ × 2‼ × 3‼ n‼ × n − 1 ‼ 6 × 4 × 2 × 5 × 3 nC = = 0 0‼ × −1 ‼ n − 1 ‼ × n ‼ 3 × 2 × 2 × 3 = 20 = 1 n‼ × n − 1 ‼ 6‼ × 5‼ nCn = n‼ × n − 1 ‼ −1 ‼ × 0 ‼ 6p3/3! = / 3! 2‼ × 3‼ = 1 6 × 4 × 2 × 5 × 3 × 1 = /6 2 × 3 × 1 Result 5 = 120/6 nC1 = n =20 Proof: n‼ × n − 1 ‼ Result 8 nC1 = 1‼ × 0 ‼ n − 2 ‼ × n − 1 ‼ nCr + nCr−1 = (n + 1)Cr n n − 2 ‼ = 1‼ × 0 ‼ n − 2 ‼ Proof: = n w.k.t (n + 1)Cr Example n + 1 ‼ × n ‼ = ____________(1) 6‼ × 5 ‼ r‼ × r − 1 ‼ n − r + 1 ‼ × n − r ‼ 6C1 = 1‼ × 5 ‼ 0 ‼ × 4 ‼ LHS=nCr + nCr−1 6 × 4 × 2 = 4 × 2 = 6 Volume 7 Issue 12, December 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY Paper ID: ART20193805 10.21275/ART20193805 1184 International Journal of Science and Research (IJSR) ISSN: 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 n‼ × n − 1 ‼ n‼ × n + 1 ‼ 1 = = r‼ × r − 1 ‼ n − r − 1 ‼ × n − r ‼ (n + 1) × r − 1 ‼ × n − r ‼ r‼ × n − r − 1 ‼ n‼ × n − 1 ‼ 1 + + r − 2 ‼ × r − 1 ‼ n − r + 1 ‼ × n − r ‼ r − 2 ‼ × n − r + 1 ‼ (n + 1)n‼ × n − 1 ‼ = (n + 1)r‼ × r − 1 ‼ n − r − 1 ‼ × n − r ‼ (n + 1)n‼ × n − 1 ‼ + (n + 1) r − 2 ‼ × r − 1 ‼ n − r + 1 ‼ × n − r ‼ n‼ × n + 1 ‼ n − r + 1 n − r − 1 ‼ r − 2 ‼ + r r − 2 ‼ n − r − 1 ‼ = n + 1 × r − 1 ‼ × n − r ‼ r‼ × n − r − 1 ‼ r − 2 ‼ × n − r + 1 ‼ n‼ × n + 1 ‼ n − r − 1 ‼ r − 2 ‼ n − r + 1 +r = n + 1 × r − 1 ‼ × n − r ‼ r‼ × n − r − 1 ‼ r − 2 ‼ × n − r + 1 ‼ n‼ × n + 1 ‼ n + 1 = 2n = n + 1 × r − 1 ‼ × n − r ‼ r‼ n − r + 1 ‼ Since using binomial formula n n − 1 n + 1 ‼ × n ‼ (a + b)n = an + nan−1b1 + an−2b2 + ⋯ + bn = 2! r‼ × r − 1 ‼ n − r + 1 ‼ × n − r ‼ We observe this a=1, b=1 = n + 1 Cr by 1 Result 10 nC + nC + nC + ⋯ + ⋯ = nC + nC + nC + ⋯ + ⋯ Example: 0 2 4 1 3 5 = 2n−1 nCr + nCr−1 = (n + 1)Cr Where n=5, r=2 Proof: nC0 + nC2 + nC4 + ⋯ + ⋯ LHS=5C2 + 5C1 5‼ × 4 ‼ 5‼ × 4 ‼ n n − 1 = + = 1 + 2‼ × 3 ‼ 1 ‼ × 2 ‼ 1‼ × 4 ‼ 0 ‼ × 3 ‼ 2! 4 × 2 × 5 × 3 4 × 2 × 5 × 3 n n − 1 n − 2 n − 3 = + + + ⋯ 3 × 2 × 2 3 × 4 × 2 4! = 10 + 5 = 15 1 n n 6‼ × 5 ‼ = (1 + 1) + 0 RHS = 6C = 2 2 2‼ × 4 ‼ 1 ‼ × 3 ‼ = 2n−1 6 × 4 × 2 × 5 × 3 = nC1 + nC3 + nC5 + ⋯ + ⋯ 4 × 2 × 2 × 3 n n − 1 n − 2 = 15 = n + 3! n n − 1 n − 2 n − 3 n − 4 Result 9 + + ⋯ n 5! nC0 + nC1 + nC2 + ⋯ + nCn = 2 1 = (1 + 1)n + 0n Proof 2 = 2n−1 w.k.t n‼ × n − 1 ‼ nC0 = = 1 Since binomial formula 0‼ × −1 ‼ n − 1 ‼ × n ‼ n n n‼ × n − 1 ‼ a + b + a − b nC = = n 1 1‼ × 0 ‼ n − 2 ‼ × n − 1 ‼ 2 n‼ × n − 1 ‼ n n − 1 n n n − 1 n−2 2 nC = = = a + a b 2 2‼ × 1 ‼ n − 3 ‼ × n − 2 ‼ 2! 2! n‼ × n − 1 ‼ n n − 1 (n − 2) n n − 1 n − 2 n − 3 n−4 4 nC = = + a b + ⋯ 3 3‼ × 2 ‼ n − 3 ‼ × n − 4 ‼ 3! 4! n n Etc… a + b − a − b n‼ × n − 1 ‼ n n − 1 2 nC = = n−2 2‼ × 1 ‼ n − 3 ‼ × n − 2 ‼ 2! n−1 1 n n − 1 n − 2 n−3 3 n‼ × n − 1 ‼ = na b + a b nC = = n 3! n−1 1‼ × 0 ‼ n − 2 ‼ × n − 1 ‼ n n − 1 n − 2 n − 3 n − 4 n−5 5 n‼ × n − 1 ‼ + a b nC = = 1 5! n 0‼ × −1 ‼ n − 1 ‼ × n ‼ + ⋯ 4. Conclusion n = 1 + 1 Volume 7 Issue 12, December 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY Paper ID: ART20193805 10.21275/ART20193805 1185 International Journal of Science and Research (IJSR) ISSN: 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 In this paper I have find out and proved some results with example, properties of combinations applying the technique of double factorial. It is used in many areas. Already I have calculated and proved some results with example, properties of permutation applying the technique of double factorial and I extend this paper to solve the same concept to find out the properties of combinations using double factorial. References [1] Ramesh Chandra, “Permutation and combinations” book. [2] Anglani R, Barlie M. Factorials as Sums. arXiv:Math/0702010v1 [Math.HO] 2007. [3] Bhargava M. The Factorial Function and Generalizations. Math. Assoc. America. Am. Math. Monthly. 107:783–799. 2000. [4] Culham JR. Factorial, Gamma and Beta Functions. Engineering Course ME755- Special Functions. University of Waterloo, Waterloo. 2014. [5] Dartmouth College . Correspondance Between Leonhard Euler and Chr. Goldbach, 1729–1763. 2014. pp. 1–59. [6] Davis PJ. Leonhard Euler’s Integral: A Historical Profile of the Gamma Function. In Memorium: Milton Abramowitz. Math. Assoc. America. Amer Math Monthly. 66:849–869. 1959. Volume 7 Issue 12, December 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY Paper ID: ART20193805 10.21275/ART20193805 1186 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us